Innovation, Components, and Complements

Hal R. Varian
UC Berkeley
WISE
December 13, 2003

Overview

- Information Rules, Shapiro and Varian, (Harvard Business School Press, 1998)
- What can we learn from history?
 - Technology revolutions
 - Nature of innovation
 - Business problems
 - Policy problems

Stylized facts about innovation

- Importance of simultaneous innovation
- Critical role of
 - Components
 - Complements
 - Standards
- These forces are still active today

Simultaneous innovation

- Historical
 - Howe/Singer ...
 - Edison/Swan ...
 - Bell/Gray ...
- Recent
 - Digital computer
 - Personal computer
 - Dot coms

Why simultaneous innovation?

- Demand side
 - Recognized problem and/or need
 - Problem seems solvable
- Supply side
 - Standardized components
 - Parallel experimentation
 - "Combinatorial innovation"
 - Development of complements (before, after, during initial innovation)

Examples

Historical

- Standardized parts in the 1800s
- Edison Menlo Park laboratory
- Wright Brothers in early 1900s

Recent

- Integrated circuit
- Web components
 - TCP/IP, HTML, HTTP, CGI, forms, menus, etc.
 - Particularly rapid innovation due to...

Components and complements

Components

- Standardized interface, ubiquitous, cheap
- Often developed for some other purpose
- Part of a more complex system
- Examples: screws, chips, TCP/IP, etc.

Complements

- Value to user depends on entire system: DVD player+disks, autos+gasoline, hardware+software
- Often components assembled by manufacturer, complements assembled by user (but many exceptions)

Complements

- Supply side: cheaper to produce one product if also produce other
 - Economies of scale: decreasing unit costs
 - Economies of scope: shared facility (software)
- Demand side: value of one product is enhanced by other
 - Scope: hamburger+catsup, VCR+tapes
 - Scale: fax machine+fax machine
- Book to read (in addition to *InfoRules*): Brandenburger and Nalebuff: *Co-opetition*

Consumption complements

- Complementary products: value to user depends on whole system
 - Radio/TV + content
 - DVD player + disks
 - CPU + hard drives
- Fundamental questions
 - How is coordination accomplished?
 - Chicken and egg problem with new system
 - Technology evolution with existing system
 - Who does "system integration"?
 - How to divide value up among complementors?

Examples from Silicon Valley

- Question about coordination
 - 3Com: "must align with others"
 - Adobe: works with printers, integrators, VARs,
 CPU manufacturers
 - Juniper: other network manufacturers, other layers
 - Seagate: "drives are always part of a larger system"
- Moore's Law as coordination device to avoid bottlenecks for technology treadmill?

Working with complementors

- Two sorts of problems
 - Coordination
 - All parties have same objectives, major problem is in organization and management
 - Incentives
 - Different objectives lead to working at crosspurposes
 - Normal case is a mixture of two problems

Pure coordination problems

- A natural leader emerges
 - E.g., a system integrator, or someone who controls a standard or bottleneck
 - Extremely powerful position
 - IBM System 360
 - Microsoft/Intel "gift from IBM"
- One side absorbs other (merge or acquire)
 - But can be hard to succeed due to differences in competencies
 - Sony/Columbia example
 - AOL-Time Warner

Coordination technology

- Coordination is easier now because of technology
 - Fax, email, attachments, intranet, etc. Pixar database.
- Impact on boundaries of firm?
 - Lower communication cost means...
 - Easier to coordinate across firms
 - But also easier to coordinate within a firm (Alfred Chandler)
 - High-powered incentives across separate firms
 - Everybody likes competition among suppliers more than internal monopolies
 - But what if the external supplier is a monopolist?
 - Market structure (determined by economies of scale) dominate communications costs as determinant of outsourcing
 - E.g. IBM sale of Global Networks to AT&T v Windows OS

Incentive problems

- Two problems (among many)
 - Price/quality choices
 - Holdup
- Other problems for some other time
 - Channel conflict
 - Information sharing

Example: pricing

- Two components to system, e.g., hardware/software
- Cut price of hardware, increases sales of software and vice versa
- Not necessarily taken into account in pricesetting calculation by single firm
- Result: system price is too high, both companies benefit from both reducing price
 - Consumers benefit too
 - Coordinating prices of complements is a win all the way around!

Pricing complements (detail)

- Value to user depends on all components
 - Left shoe + right shoe, hardware + software+ service, DVD player + disks
- So demand depends on sum of prices
- Revenue to firm $1 = p_1 D(p_1+p_2)$
 - Cutting your price may raise revenue
 - Both cutting prices raises revenue for each
 - Other firm cutting its price raises your revenue the most! How to do this? See next slide...
 - Big win to coordinating "quality" as well
 - Quality of system may depend on min(q₁,q₂), as in a network

Solution: ways to cut complement's price

- Integrate: set price yourself
- Collaborate: e.g., revenue sharing
- Negotiate: I'll cut mine if you cut yours
- Nurture: work with them to lower costs
- Commoditize: make their industry more competitive

Cut complement's price: integrate and negotiate

Integrate

- One firm sells both hardware and software (e.g., ethernet cards and drivers)
- May be important for quality reasons (IBM, Sun)
- Problems
 - Complexity management challenge
 - Core competency

Negotiate

- DVD Forum: negotiated to push prices down.
 Licensing core patents.
- Note: Antitrust implications. But coordination of prices is a win for both consumers and producers.

Cut complementor's price: collaborate

- Revenue sharing
 - Blockbuster "guaranteed in stock"
 - Purchase v rev share contract
 - Role of IT in providing transaction monitoring
- Outcome
 - Distributor, video store, consumers all better off
- IBM example of partnerships with applications software companies

Aside on "computer mediated contracts"

- Revenue sharing etc. may become much more widely used due to cheap monitoring devices (RFID, cash registers, etc)
 - Supermarket rev share with vendors
 - Rental car speed detection
 - Truck EVM systems
 - Wal-Mart RFID
- Contract provisions depend on monitoring costs: cheaper monitoring usually means better contracts ["Can't manage what you can't monitor."] Can't contract on it either.

Another example: Real-time marketing

- "Half of my advertising budget is wasted, I just don't know which half..."
- Google "pay per click" pricing
 - Real time feedback from marketing campaigns
- Ad campaign monitoring with Web activity
- Tivo/Replay ad feedback
- Marketing will become much more high-tech and quantitative in future...
 - Quants move from Wall Street to Madison Avenue

Cut complement's price: nurture

- Improve quality of complements
 - Microsoft Windows Hardware Quality Labs
 - Cisco Certified Internetwork Expert
 - Auto industry working with suppliers/complementors
- Push costs of complementors down
 - Help them to standardize
 - Communicate efficiently with them
 - Supply chain management, etc.

Cut complement's price: commoditize

- Hardware maker wants cheap software, software maker wants cheap hardware
- How to achieve?
 - Push for standards in complementor's industry
 - Encourage competition
 - Enter yourself to jump start industry
 - Take minority investments to maintain involvement
 - Recent example: Intel and WiFi [commodity biz]
- Examples
 - Early history of radio, RCA, AT&T
 - Wintel: "extraordinarily productive, necessarily tense"

The End

...and thanks for your attention

Problem: hold-up

- One complementor may try to hold up the other (put them in a position where they have no choice and extort more value)
 - Unilaterally raise price of critical component
 - Assert intellectual property rights on key component
 - "Lowball the bid and make it up on change orders"

Solutions to hold up

- Contracts
 - But there are negotiation/verification costs
- Commitment device
 - Posting a bond
- Dispute resolution procedures
 - Binding arbitration
- Second sourcing
 - Creates competition
- Repeated interaction
- Reputation

Networks: a kind of system

- Value of technology depends on number of users (aka Metcalfe's Law)
- Direct network effects
 - Fax machine + fax machine
 - Email + email
- Indirect network effects (complements)
 - Web browser + server
 - Intel PC + Windows OS

Network effects, cont.

- Economics literature
 - Rohlfs: Critical mass
 - Katz and Shapiro: Strategy to achieve critical mass
- Examples of network effect
 - eBay
 - Visa
- How to get to critical mass [details follow]
 - First mover (or even better: fast follower)
 - Penetration pricing
 - Expectations management
 - Alliances

Penetration pricing

- Subsidize early adopters
 - Introductory pricing
 - Favored groups (e.g., NSFNET and Internet subsidies to universities)
- Give away bundled samples of complement
 - VCRs + video clubs, DVDs

Expectations management

- Reputation, vaporware, pre-announcement
- Build industry alliance (Java)
- Don't allow fragmentation (Divx)
- Synchronize product introduction
- Solve standardization, complements pricing problem
- Examples
 - How to do it: DVD
 - How not to do it: eBooks

Demand and supply (standard case)

- Suppose consumers have value v ~ U[0,1] for good with price p
 - Buy if v > p
 - So demand function: x= 1-p
- Sellers can produce at constant marginal cost
 c, so price must = c
- So Demand=Supply implies x=1-c
- Standard dynamics: demand > supply -> quantity produced increases

Demand and supply

Network good

- Value depends on "standalone value" and number of adopters
 - E.g., value = vn where $v \sim U[0,1]$
 - Let value of "marginal adopter" be v*
 - Marginal person just indifferent: v*n=c
 - Everyone with value greater than v* adopts, so n=1-v*, or equivalently v*=1-n
 - Substitute to find "demand=supply" condition (1-n)n=c

Network dynamics

Standardization and interconnection

- If value depends on size, interconnection is important strategy
 - socially valuable
 - valuable to customers, new entrants, complementors
 - may or may not be good for incumbents
- Your value = your share x value of market[n]

Example: standards in auto industry

- Auto industry
 - 1904-1908: 240 companies entered auto industry (suppliers and assemblers)
 - 1910: recession
 - Ford pulled ahead by mastering mass production
- Standardization
 - Suppliers: wanted stability
 - Assemblers: wanted economies of scale
 - Solution: Society of Automotive Engineers
- Problem
 - Dominant incumbents: Ford and GM

Effects of standards

- Competition, learning curve and scale economies: all reduce costs
- Risk reduction (shocks, holdup, etc.)
- Provides components for innovation
- Problem with conflicting goals:
 - Want other guy's stuff to be standardized
 - You want your stuff to be proprietary

Types of standards

- Formal standards setting bodies (IEEE, ITU, EIA, etc.)
- Ad hoc standards setting bodies
- Proprietary "standards"

Issues

- Tradeoff between too much and too little control
 - One firm controls a standard
 - But can they get away with it? Micropayments.
 - No one controls a standard
 - Fragmentation. Unix
- Speed/Quality
 - Standards bodies v ad hoc standards groups
 - Premature standardization
 - Standards wars

How to get an edge in standardized industry?

- Manufacturing skills (HP)
- Proprietary extensions to standard
- Be first to market, ride learning curve
- Understand technology/market better
- Be complementary to something cheap and ubiquitous

High-tech challenge today

- "What do users want?"
 - To do the same things better, cheaper, faster, etc.
 - To do new things
- Biggest challenge facing industry: complexity management
 - Solution requires better needs assessment, human interface, design, testing, etc.
 - Lesson of Bose speakers
 - What do users want from IT?

Why simplicity?

- Users are the bottleneck; no Moore's Law for neurons
- Systems will work better if weakest link is better (interface with user)
- One solution: self-contained, preconfigured or auto-configured systems

Pre-configured systems

- Give up customization, reduce diversity
- Impact on innovation?
 - Makes it harder to innovate in some ways
 - PC as generic platform for experimentation
 - Easier to innovate in others
 - Yesterday's system becomes today's component
 - Starts innovation all over again!

Take away questions

- Who are your complementors?
- Look at the system from the end-user's point of view. Where are the bottlenecks?
- How can you get the producers of components/complements to improve quality, lower price?
 - Integrate, collaborate, negotiate, nurture, commoditize, etc.
- How can you coordinate actions and align incentives better with complementors?