

The Role of Participation Architecture in

Growing Sponsored Open Source Communities

Joel West
San Jose State University, College of Business

http://www.JoelWest.org/Research/OpenSource/

Siobhán O’Mahony
UC Davis, Graduate School of Management

Final manuscript draft
February 6, 2008

Published as
Joel West and Siobhán O’Mahony, “The Role of Participation Architecture in Growing Sponsored Open

Source Communities,” Industry & Innovation, 15, 2 (April 2008): 145-168.
http://dx.doi.org/10.1080/13662710801970142

Copyright: This is a preprint of an article whose final and definitive form will be © 2008 Taylor

and Francis, and will be published in Industry & Innovation, which is available online at:
http://journalsonline.tandf.co.uk/.

Acknowledgements: Earlier versions of this paper were presented at the Academy of

Management and European Academy of Management conferences. We thank the guest editors, two
anonymous reviewers and especially the EURAM participants for their helpful suggestions.

Abstract: Most research on open source software communities has focused on those that are

community founded. More recently, firms have founded their own open source communities. How do
sponsored open source communities differ from their autonomous counterparts? With comparative
examination of 12 open source projects initiated by corporate sponsors, we identify three design
parameters that together help form a participation architecture – the opportunity structure extended to
potential external contributors. In exploring sponsors’ community design decisions, we found that
sponsored open source projects were more likely to offer transparency than they were accessibility
and that this had implications for their communities’ growth. We contribute theoretical constructs that
offer a common basis of comparison for the future study of open source projects and illustrate how
the tension between control and growth affects open source community design and creation.

http://www.JoelWest.org/Research/OpenSource
http://dx.doi.org/10.1080/13662710801970142
http://journalsonline.tandf.co.uk

- 2 -

Technical communities often play a crucial
role in helping firms to develop and deploy new
technical innovations (Rosenkopf, Metiu and
George, 2001; Rosenkopf and Tushman, 1998;
Mowery and Simcoe, 2005; Fleming and
Waguespack, 2007). Technical communities
provide a vehicle for the exchange of technical
information that fosters the accumulation of
innovations (Saxenian, 1994; von Hippel, 1988;
Allen, 1983) and enables actors from different
organizational forms to collaborate (Rosenkopf
and Tushman, 1998; Van de Ven, 1993).
Technical communities, like industry
associations, help firms identify mutual interests
that might otherwise go undiscovered (Sabel,
1984). Empirical work suggests that firms
benefit from participating in technical
communities by gathering information on
potential alliances, identifying opportunities for
future inter-firm collaboration (Rosenkopf et al,
2001) and sharing risk (Tushman and
Rosenkopf, 1992; Rosenkopf and Tushman,
1994; 1998).

One type of technical community that has
received a great deal of empirical attention is an
open source software development community.
These communities are composed of individuals
who collaborate toward a common goal but do
not share a common employer and are not
governed by an employment hierarchy. By using
both online and offline means, open source
software communities collectively produce
software that is freely and publicly available –
creating in effect a shared public good that can
be used for either public or private purposes
(von Hippel and von Krogh, 2003; Lee and
Cole, 2003; O’Mahony, 2003, Murray and
O’Mahony, 2007; Markus, 2007).

Prior research on open source communities
has emphasized autonomous and “self-
managed” communities that are typically
founded by individuals or groups who recruit
and mobilize other community members to
contribute and grow organically. However, since
the first corporate founded open source project
(Mozilla) was launched in 1998, firms have
begun to create or sponsor their own open
source communities. Firms sponsoring open
source communities typically due so as part of
an intentional open innovation strategy (West
and Gallagher, 2006). Because these

communities are founded for strategic reasons,
they are likely to differ from their autonomous
counterparts. However, little is known about
how corporate sponsorship affects how open
source communities are designed and evolve.
Too often the existence of technical
communities is taken as a given, and the factors
influencing their design unexplored (Hargrave
and Van de Van, 2006).

If communities are an important vehicle for
mediating firm interactions (Rosenkopf et al,
2001) and potentially for innovation outcomes
(von Hippel, 2005; Jepperson and Frederiksen,
2006), then understanding such collaborations is
crucial to any understanding of that roles that
communities play in innovation. This research
examines 12 sponsored open source
communities, and contrasts them with prior
research on autonomous communities. From this
comparative analysis, we identified three design
dimensions that corporate sponsors consider
when designing open source communities: 1)
intellectual property rights, 2) development
approach, and 3) model of community
governance. We found that design decisions in
these three areas created a specific participation
architecture: i.e. the socio-technical framework
that extends participation opportunities to
external parties and integrates their
contributions. Much as architecture guides
people in physical space, a participation
architecture guides interactions and exchange in
a community through the social, legal, and
technical capabilities offered to community
members. While prior research has shown that a
project’s technical architecture can affect
community participation (Baldwin and Clark,
2006; MacCormack, Rusnak and Baldwin,
2006), there has been less appreciation for how
community design choices can also affect
participation.

By comparing the participation architectures
that resulted from sponsors’ design decisions,
we identified two types of openness:
transparency and accessibility. While
transparency offered potential contributors the
ability to follow and understand a community’s
production efforts, accessibility determined the
degree to which external contributors could
influence that production. In designing a
community, sponsors were more likely to offer

- 3 -

transparency than they were to offer
accessibility to external community members.
We found that sponsors faced a control vs.
growth tension. To leverage the ability of
communities to contribute to their firm’s bottom
line, sponsors sought to maintain control over
the community’s strategic direction. However,
sponsors soon discovered that by restricting
access to community processes, they limited
their community’s ability to attract new
members and grow.

We contribute to the literature on open
source communities, technical communities and
firms and community collaboration in three
ways. First, we identify some key distinctions
between sponsored communities and
autonomous communities that can help further
research on firm-community collaboration and
innovation. Second, we develop the construct of
participation architecture and show how it is
operationalized in a sample of open source
communities. Third, we illustrate the “control-
growth” tension that sponsors building
communities face when making design
decisions. Our research shows that participation
in a community is determined not only by the
technical architecture identified by Baldwin and
Clark (2006), but also by the organizational
structure that results from a sponsor’s
community building design decisions.

Firms and Technical Community
Collaborations

To some extent, firms and technical
communities have always collaborated (Allen,
1983) to create standards (e.g., Isaak, 2005),
shared infrastructure (Bradner, 1999), and
innovation outcomes (Hargrave and Van de Ven,
2006) that are bigger than any one firm can
achieve. Empirical work suggests three reasons
why firms participate in technical communities.

First, there is increasing evidence that path
breaking innovations cannot occur without a
community to interpret, support, extend and
diffuse them (Hargrave and Van de Ven, 2006;
Schoonhoven and Romanelli, 2001; Hargadon
and Douglas, 2001; Hunt and Aldrich, 1998;
Christensen and Rosenbloom, 1995; Rosenkopf
and Tushman, 1994; Tushman and Rosenkopf,
1992; Anderson and Tushman, 1990; Van de

Ven and Garud, 1989). Research on
technologies such as medical devices, bicycles,
computer hardware, and electricity show that
new technologies are shaped by human
institutions that provide a context for the
interpretation and use of such technologies
(Bijker, Hughes and Pinch, 1987).

Second, research on collective models of
innovation (von Hippel, 2005; von Hippel and
von Krogh, 2003; Hargrave and Van de Ven,
2006; Allen, 1983) and on community technical
organizations (Rosenkopf, Metiu and George,
2001; Rosenkopf and Tushman, 1998) shows
that communities of lead users help firms not
only in interpreting and applying new
innovations, but in their creation and further
development by refining new design iterations
(von Hippel, 1988, 2005; Shah, 2006; Murray
and O’Mahony, 2007). A large body of evidence
suggests that firms in many industries (toys,
entertainment, medical devices, manufacturing,
sporting goods, music) benefit from
contributions from community members
(Jepperson and Frederiksen, 2006; von Hippel,
2005; Franke and Shah, 2003; Lakhani and von
Hippel, 2003).

Third, although it is not widely recognized,
technical communities provide a vehicle to
coordinate the work of both firms and
individuals in developing new technologies and
standards (Rosenkopf et al, 2001; Mowery and
Simcoe, 2005). Technical communities offer
individuals leadership opportunities (Fleming
and Waguespack, 2007; O’Mahony and Ferraro,
2007) and enhance their technical credibility
(Hars and Ou, 2002; Lerner and Tirole, 2002).
For example, participation in a specific public
community (such as standardizing the http
protocol as a member of the Internet
Engineering Task Force) allows participants to
both develop and advertise domain specific
knowledge (Fleming and Waguespack, 2007).

The degree to which firms benefit from
collaboration with technical communities can
also depend on features of the technology itself
such as the degree of modularity (Baldwin and
Clark, 2000), or the number of complements,
linking mechanisms, or interface technologies
required (Tushman and Rosenkopf, 1992).
While practitioners have long argued that
effective management of such communities can

- 4 -

help support firm goals (Williams and Cothrel,
2000; Armstrong and Hagell, 1996; Godwin,
1994) little empirical work has been done in this
area. To further our understanding of how firms
and communities collaborate, scholars have
recently turned their attention to a specific type
of technical communities, open source software
development communities.

Early research on open source software
communities focused on individual motivations
to participate. Lerner and Tirole (2002) argued
that contributors to open source communities
participate in order to improve the visibility of
their skills in the open labor market. However,
subsequent empirical work suggests that
volunteer contributors to community projects are
equally likely to receive intrinsic benefits.
Contributors to open source projects do so
because they enjoy solving technical problems,
they identify with the project’s goals, they are
interested in building their skills, or simply want
to improve the software for their own use
(Lakhani and Wolf, 2003; Hertel and colleagues,
2003; Hars and Ou, 2002).

Since major corporations began
incorporating community developed open source
software in their products and services (e.g.
West and Dedrick, 2001; Baldwin, O’Mahony
and Quinn, 2003; MacCormack and Herrman,
1999), many communities have attracted
donations of code and on-going development
participation from firms as well as individuals
(O’Mahony, 2002; 2005; Dahlander and
Magnusson, 2005). Because a community’s
output is publicly available, it limited the extent
to which a firm’s direct benefit from their
investment in the community would remain
unique to them. However, firms gained indirect
economic benefits and competitive advantage by
leveraging the widespread adoption of popular
open source projects, leveraging the shared
R&D investment of the community, and selling
other goods and services necessary to provide a
complete solution (West, 2003, 2007; West and
Gallagher, 2006).

Some communities explicitly recognize
firms as participants, while in other cases firms
participate indirectly through employees (i.e.,
sponsored contributors) that represent the firm’s
interests (Dahlander and Wallin, 2006). Often,
an open source community will create an

informal or formal social structure to manage
membership and joining (von Krogh, Spaeth and
Lakhani, 2003; O’Mahony and Ferraro 2007),
but little has been done to understand how these
projects are governed (see Shah, 2006; Markus,
2007; O’Mahony, 2007 for recent exploratory
exceptions).

In addition to collaborating with
autonomous open source communities, a
growing number of corporate and government
sponsors have founded their own open source
communities to meet either public or private
objectives. West and O’Mahony (2005)
distinguished between individually-founded and
organizationally-founded open source
communities, designating the former as
“organic” and the latter as “synthetic”. These
distinctions emphasized the different character
of these two types of community founders and
their prospective growth strategies. While
organic projects are founded by individuals and
grow through grass roots communications,
synthetic communities are founded by
corporations and grow with more strategic
direction. Since communities can evolve along
different trajectories after their founding, in this
paper, we refer to autonomous and sponsored
communities to focus on their current
governance structure (cf. Markus, 2007;
O’Mahony, 2007) as opposed to their founding
state. For example, a synthetic community could
begin as a sponsored community, but evolve to
become fully autonomous – as was the case with
Netscape’s release of Mozilla and its subsequent
transition to independence. By using the
categories of autonomous and sponsored, our
aim is to provide a more precise categorization
to help scholars examine open source
communities over their lifecycle.

We define an autonomous open source
community as one that is presently independent
of any one firm and community managed (cf.
O’Mahony, 2007). A community-managed
governance system operates outside the reach of
authority embedded in employment relations.
Contributors to an open source project may be
volunteers or may be paid by their employers to
work on the project, but decision-making on the
project takes place independently from the
employment structure that guides the workplace.
These projects may be supported by a non-profit

- 5 -

foundation created specifically to support the
project, but such foundations have little
authority over their members (O’Mahony,
2005).

A sponsored open source community is one
where one (or more) corporate entities control
the community’s short- or long-term activities.
To refine these distinctions, in thus study, we
examine how sponsors approached the task of
building an open source community and how
these communities differed from their
autonomous counterparts.

Methods
Given that there has been relatively little

research on sponsored open source software
communities, we examined why sponsors
created open source communities and how their
motivations affected the design of the
communities they founded. Because sponsors
understood that the design of an open source
community affected a community’s ability to
attract contributors, and because this was widely
regarded by sponsors as a sign of a successful
open source community, we asked: how do
community design decisions affect their ability
to attract external participants? Since our
informants frequently referred to autonomous
communities as the inspiration for their own
community building efforts, we analyzed the
data in comparison with findings from prior
research on a limited number of previously-
studied autonomous communities For
comparison purposes, we contrasted our findings
with the earliest and most successful
autonomous communities that had the greatest
influence on the decisions of our firm sponsors:
Apache and four major Linux-related
communities.1

Research Design. We adopted a grounded
theory approach, which is well suited for
phenomena that are emergent or poorly

1 Because our focus was on sponsored

communities, we did not gather primary data on
autonomous communities, and thus our reference
group was limited both in size and diversity. We
believe that group was representative of early,
successful autonomous projects but not of a
broader population of autonomous projects that
include both successes and failures.

understood (Strauss and Corbin, 1990). Such an
approach provides the broadest possible
contextual information for understanding a
phenomenon where there is not strong a priori
theory (Edmondson and McManus, 2007). Thus,
the study was guided by an inductive, qualitative
approach using ethnographic methods.

Sample. To study sponsored open source
communities, we employed a theoretical
sampling approach to identify a wide range of
possible structures and relationships (cf. Glaser
and Strauss, 1967). We selected 12 sponsored
open source communities founded between 1983
and 2004 that embraced elements of the open
source model: an open source license, publicly
available code and evidence of community on
mailing lists from. Since there was no single
source available that could identify the
population of sponsored open source projects,
we drew upon our prior field work in the open
source field to identify such a population.

We excluded from our sample of study,
those projects not perceived as open source by
open source developers, such as Microsoft’s
“shared source” projects which provide a subset
of open source intellectual property rights to a
defined sub-groups of customers (West and
Dedrick, 2001) or “gated communities” that use
open source development processes for a
defined population without public release of
intellectual property (Shah, 2006). Of the
sponsored open source communities that we
identified and met this criteria, six were founded
by traditional large proprietary technology
companies, five were founded by firms to
commercialize the open source software
produced by the community, and one was
sponsored by a non-profit organization set up
specifically for that purpose. Table 1 presents
descriptive information on the 12 projects
selected.

Data. As this was exploratory research, we
interviewed one to six informants from each
sponsoring organization. After selecting
communities, informants were identified from
project webpages and industry conferences.
Semi-structured interviews were 60-90 minutes
long, and focused on understanding how
sponsors approached the prospect of building
community. More specifically, interviews
covered the following domains: 1) when and

- 6 -

how sponsor founded an open source
community; 2) how they prepared for and
designed an open source community; and 3)
their experience thus far in building community.
Most of the interviews (N=23) were conducted
face to face, with the remainder (N=6) over the
phone. These visits were followed by an analysis
of the community’s website and follow up
questions posed to the informants as appropriate.
We collected our data from early 2002 through
mid-2005.

Data Analysis. We analyzed the interview
transcripts, coding relevant observations
compared and contrasted our interview notes.
Emergent themes in the data were synthesized in
research memos written in an on-going research
log. As our research progressed, we contrasted
our interim findings with prior research on
autonomous communities to better understand
the distinctions between the two.

Findings
While prior research on open innovation

has found that open approaches to developing
communities can vary in the degree to which
they are “open”, our informants taught us that
when forming a community, there were two
distinct types of openness: transparency and
accessibility. Transparency allows outsiders (i.e.
non-sponsors) to understand what is happening
and why — and, in the case of an open source
community, allows use of the community’s final
product, the source code. Accessibility allows
external participants to directly influence the
direction of the community to meet their specific
wants and needs, regardless of whether the
external party is a hobbyist or an organizational
adopter. In some cases, external contributors
could be sellers of goods and services that might
either compete with or complement the
sponsor’s business.

How were these two different types of
openness provided? By comparing our data
across 12 sponsored open source projects, we
found that the design choices made by sponsors
of open source communities could be
categorized into three dimensions: 1) the
organization of production; 2) community
governance and 3) intellectual property. We
identified these conceptual categories by
examining how sponsors’ design choices

affected what community participation.
Decisions with regard to the organization of
production shaped how code development would
took place, while community governance
decisions shaped the processes by which
decisions were made within the community; and
intellectual property design decisions affected
the allocation of rights to use the community’s
output. Table 2 shows how these three design
dimensions compare with those of proprietary
software development, the approach historically
used by companies in the software industry.

After noting the importance that our
informants placed on designing community
forums for participation, we realized that, when
considered together, these three dimensions of
community design formed the basis of a
participation architecture. We define a
participation architecture as the socio-technical
framework that extends opportunities to external
participants and integrates their contributions.2
A participation architecture guides interactions
and exchange in an online community and
encompasses the social, legal, and technical
capabilities offered to community members.
While sponsored communities were by some
measures less open than most autonomous
communities, in all cases, the decision to create
an open source community was inherently a
more open approach than a proprietary software
development approach.

Within these three design dimensions
that we categorized, we identified 11 design
parameters chosen by the founders and
subsequent leaders of the communities in our
sample (Table 3). Both transparency and
accessibility were relevant across each of the
three dimensions of an open source project.
After coding our data to understand whether a
design parameter affected the organization of
production, governance or intellectual property,

2 The concept of an “architecture of participation”

was initially articulated by O’Reilly (2005) as a
set of heuristics that encourage participation and
innovation. The “participation architecture”
construct we develop here is intended to meld
that earlier usage with an interorganizational
analog to the “technical architecture” of Baldwin
and Clark (2006).

- 7 -

we revisited it to determine whether that design
choice enabled transparency or access.

We found that the degree to which
sponsors’ offered transparency or accessibility in
these key areas affected sponsors’ ability to
attract external participants and grow these
communities. By examining sponsors’
community design decisions, we discovered that
one of the primary challenges sponsors faced
was how to how manage the tension between
controlling the community in order to leverage
their investment in it and opening up access to
the community in order to attract greater growth
of participants.

Managing the Tension Between Control and
Openness

One key difference between autonomous
(community managed) and sponsored open
source software projects is that the sponsors of
open source projects faced a fundamental
tension between two conflicting goals. On the
one hand, sponsoring an open source project was
intended to advance the goals of the sponsoring
organization. Sponsoring an open source project
required significant investment in preparing the
code, hosting the site, providing introductory
materials and marketing the new opportunity. As
such, community sponsors sought to maintain
some degree of control over the project to assure
ongoing alignment between their investment in
the community and related product goals.

On the other hand, the provision of source
code under an open source license was an
inherently open approach intended to win
greater external participation and technological
adoption. In some cases, sponsors sought
adoption from prospective users (cf. West,
2003); in other cases, they sought adoption from

producers of complementary products or even
direct competitors.3

We found that for the most open
communities, the participation of external
parties provided sponsors with both direct
benefits (such as code contributions and bug
reports from participants) and indirect benefits
(such as marketing and adoption benefits from
their open approach). For the most closed
communities, sponsors thought that the primary
benefit they received from creating an open
source community was not from direct
community contributions, but instead from
increased public awareness, accelerated low cost
distribution, and reduced costs of marketing.

The CEO of one open source startup
explained how expensive commercial marketing
channels were relative to the marketing benefits
that could be derived from an open source
community.

Every dollar you give
[proprietary competitor], 70
cents to goes to fund the sales
and marketing efforts, and
maybe 11-14% actually goes to
pay the engineering salaries that
write the code. …The barriers to
entry into this marketspace isn’t
building a better product, it is
having $50-60 million a year
just to blow on sales and
marketing. And that’s really a
shame. I just thought that was
really frustrating from someone
that is an innovator, someone
that wants to compete by

3 Comparing the size of the community (or

amount of community participation) between our
12 communities is problematic because the
product category for some projects (e.g. Mozilla)
have much bigger potential audiences than others
(e.g. Sendmail). Such comparisons are made
more difficult by the relative scarcity of
competing open source projects within the same
category. Thus we rely on each project’s sense of
its growth relative to the inherent potential for
such growth, including the statements by some
informants that they made choices to restrict
openness that they knew limited the growth of
contributions or other forms of participation.

- 8 -

building a better product [rather
than] on just the sheer
economics of sales and
marketing.

While sponsors shared a surprising degree of
agreement on their motivation to create an open
source community and the most immediate
resulting benefits, they made very different
design choices with regards to the type and
degree of openness with which they were most
comfortable. Our informants taught us that there
were two kinds of openness to consider when
designing an open source community:
transparency and accessibility. Both
transparency and accessibility were relevant
across each of the three dimensions of an open
source project (Table 2).

Transparency. Transparency meant that the
code was publicly available, that most of the
software production process was discussed on
public mailing lists or discussion boards, and
that the software release cycle and goals were
also provided on the community website. While
this was fairly unproblematic for static
information about a project, the transition to a
transparent production process took some
getting used to for most sponsors. After
receiving complaints that they were not being
transparent enough in their development
process, one community sponsor reevaluated
what needed to be public and what needed to be
private, deciding to err on the side of
transparency. In making that decision, they
decided to limit only private discussions only to
those involving third parties — but this required
changing ingrained habits. As its community
manager explained:

It [becoming open] took a while. We talked
about it before. Then we got a complaint
from someone working with us, one of the
contributors saying I think I’m missing stuff.
I don’t know exactly how justified that
particular complaint was. I am not sure that I
agreed with that.….Then we looked at the
development threads, and said, “Well what
of this really needs to be private?” “The
third party stuff”, and then we said, “Okay
let’s do it [be open].” So some of it I think
was timing, as people get more used to

being open. We went through a very similar
thing at [another sponsored project], killing
the internal lists….So we renamed them
with long, ugly, awkward names. Of course
you might get auto-fill or something, but if
you just naturally type, you got the public
list. If you wanted to do something private it
was hard instead of easy. But because a lot
of that wasn’t malfeasance, it was just the
habit of doing what you do.

This sponsor renamed internal mailing lists

to encourage developers to default to public lists
and change the base of operations from private
to public: a technological change to instigate a
cultural and process change. While the sponsor
reported that there were one or two human
resources issues that ended up on the list that
probably should not have, the changes were
largely viewed as positive for both the
organization and the community, and resulted in
the development of a new reporting tool that
could simultaneously be used for both public
and private purposes.

Accessibility. The second type of openness
sponsors considered when designing a sponsored
community was the degree of accessibility —
the amount of control sponsors would relinquish
to the community. An accessible community not
only provides visibility, but allows some
outsiders to gain access to either the project’s
code repository, community planning processes,
or strategic decision-making. Much like a
community founded by individuals, the decision
to provide access at different levels was usually
phased and based on community members’
demonstrated competence and evidence of
contribution. However, sponsors supporting
even the most accessible communities were
likely to retain control over rights allocation
rather than devolving it to the community. Two
sponsors delegated control of code commit
rights for subprojects to external parties, but
retained control of higher level decision-making.

In this way the organization of production
and governance became linked (to be discussed
further in the next section). In doing so, sponsors
explicitly recognized that granting accessibility
triggered the loss of some corporate control in a
way that a purely transparent model did not —
particularly when external participants were

- 9 -

from other (possibly competing) companies. In a
community that did not yet have a formally
approved set procedures for decision-making
right allocation, these issues were constantly
negotiated among contributing firms. As another
community manager explained:

If you are building an Open
Source project, which has
several commercial players at a
significant level, you do a lot of
negotiating and a lot of figuring
out, “Well what is the right
milestone schedule?…What is
the direction of the code base?
And what time frame? Who can
contribute code? How do you
decide what code is good
enough? Who controls, or how
do you control the relationship
of the [project] release to those
of commercial products?

In general, sponsors who most valued outside
code contributions were more likely to offer
accessibility to outside community members,
recognizing that only by devolving some level of
control, could they hope to attract the most
talented programmers outside the firm.

All sponsors worked to achieve significant
transparency in their open source communities,
but sponsors varied considerably in the
importance they placed on providing
accessibility to external parties. This distinction
provides a more nuanced understanding of the
tension between openness and control. To make
this abstract tradeoff more concrete, we
identified three specific community design
parameters that affected the degree of
transparency and accessibility that sponsors
provided.

Organization of Production
When forming an open source community,

sponsors borrowed heavily from the tools and
techniques pioneered by autonomous open
source communities. This included general-
purpose online tools such as web pages and
particularly e-mail discussion lists. However,
most also used some of the tools specifically
developed and refined for open source software

production, notably the CVS source code control
system and the Bugzilla error tracking database
(Robbins, 2005).

On the technical side, one key enabling
element is modularity. Baldwin and Clark
(2005) show how a modular architecture
offering design options increases a developer’s
incentives to join an open source community and
remain involved. Architectures that are modular
allow developers to focus their talents on
specific modules without having to learn the
whole system (Baldwin and Clark, 2005). By
maintaining compatibility with design rules
within modules developers can self-select the
modules they know best, reducing participant
learning curves and thus lowering the cost to
participate (Baldwin and Clark, 2000).

Sponsors were aware of how the degree of
modularity could affect potential barriers and
costs to participation. Thus, sponsors invested
significant resources in creating or increasing
modularity, consistent with what MacCormack,
Rusnak and Baldwin would predict (2006). For
example, the founders of one project rewrote its
version 3.0 to create more modular interfaces
than previous versions — to make code
development by others easier and facilitate
modular extension by community members.
Another dual licensed project’s highly
interdependent architecture provided high
performance but made it nearly impossible for
outside participants to become proficient with
the code — thus inhibiting potential community
contributions. In contrast, the sponsor of one of
the newer communities emphasized that “we
wrote the code knowing it would be read”; they
provided code reviews and other quality
improvements to explicitly attract outside
contributions within months of its first release.
Another sponsor bragged that his was the “best
documented open source project.”

Overall, the degree of modularity, associated
dependencies, and the quality of code
documentation affected the ability of outside
members to understand the code well enough to
contribute. However, many of the measures
available for individual projects were not
comparable. In addition to the technical
architecture of the code, the organization of
production includes control of the processes by
which individuals participate in the community’s

- 10 -

production process. These social measures are
not necessarily correlated to a project’s technical
design: for example, highly modular code can
still be tightly controlled by a single firm. Thus,
a project’s technical architecture is one subset of
a community’s participation architecture. As the
rest of the paper will show, to more fully
understand how both social and technical
attributes affect the opportunities for others to
participate requires consideration of all three
design parameters – the organization of
production, governance and intellectual
property. We identified three design parameters
that provided contributors with transparency and
accessibility to production processes:

1. Live code access provides transparency
by offering the community the chance to review
the most recent “live” version of source code on
the community website — which is more likely
to have bugs than a finished product. Nearly all
of the sponsored communities (10/12) allowed
external participants to anonymously access the
most current source code, subject to the
sponsor’s license terms. External contributors
were thus able to follow the community’s
development cycle and contribute bug reports if
they were so inclined.

2. Public commit process refers to the
opportunity for community members to become
directly involved in the production process by
earning (through demonstrated technical
proficiency) the right to directly commit
software changes to the community repository.
While all of the autonomous communities
provide such accessibility, only some (5/12) of
the sponsored communities did so. Seven of the
sponsored communities did not publicly explain
how one could go about acquiring commit rights
to their projects, but most of them (6/7)
encouraged people to send code patches via
email.

The lack of information about gaining
committer rights is not necessarily an inhibitor
for participation but it limits the status and
influence that a contributor can achieve. As one
community member explained, “people can be
phenomenally valuable contributors without
having access for a long time. Somebody else
can check their code, but people don’t like it. It
is seen as a mark of belonging.” Sponsors that
did not provide commit rights recognized such

rights would increase participation but were
unwilling to relinquish that much control over
their code.

3. Subproject creation is a mechanism by
which a community based on the sponsor’s
original code can grow to assume new
functionality or new directions. We defined
subprojects as new “start-up” projects that were
allowed to govern themselves and address unmet
needs independent of the larger community;
allowing creation of such subprojects provides
accessibility by decentralizing control over
growth and innovation in the community. While
all of the autonomous projects allowed
community members to autonomously propose
subprojects based on their own initiative, only 5
of the 17 sponsored communities did so.

Assessing Openness. Source code access
offers potential external community participants
transparency into the development process
which can help them learn how the code is
developed. Without awareness of the
community’s production process, the learning
curve to make a meaningful contribution and
thus gain membership or access within the
community will be limited. The ability to create
subprojects offers access to external parties by
providing them opportunities to shape the future
direction of the project. This type of access
sends a powerful signal as to the ease with
which external contributors can get new ideas
proposed and accepted. Allowing individuals the
right to earn commit rights offers the ultimate
degree of accessibility – the ability to make
direct contributions to the code. As Table 3
shows, more sponsors were more likely to
provide transparency in their production
processes than they were to provide
accessibility.

Governance
We define openness in open source

governance as the amount of decision-making
control that sponsors relinquished to the
community. For many in our sample, divesting
some degree of control was as much a
legitimating strategy as it was a recruitment
strategy. To attract talented contributors,
sponsors thought they both needed to acquire
legitimacy in the open source community at
large, and provide skilled participants the

- 11 -

opportunity to take on greater responsibility in
leadership roles. As one community founder
from a Fortune 100 firm explained:

[P]art of the message behind
open source is that it is open and
the community makes the
decisions. And if what we
actually did was said that the
community makes decisions,
but in practice, [the sponsor]
makes all of the decisions then
they would say “well this is not
real”.

To provide both leadership and legitimacy, some
communities have a formal concept of
membership, vesting members with key
governance decisions, and are thus more
accessible to participants. For other
communities, de facto control remains with
founding individuals (due to superior legitimacy
or technical knowledge) or with founding firms
(that provide the bulk of ongoing resources).
The design levers available for managing
openness in governance include:

1. Nonprofit foundations. All five
individually founded communities and two
sponsor-founded communities created a formal,
legal, non-profit foundation to help manage
community governance and assets; however, for
historical reasons, the Linux foundation plays a
more limited role than the others. As O’Mahony
(2003, 2005) identifies, such foundations
provide institutional permanence independent of
any one individual, as well as legal status to
negotiate with external entities (largely for the
provision of resources). Because the creation of
a non-profit foundation requires a board of
directors and regular meetings, the introduction
of such organizations also increased the
transparency of control of the community assets.

2. Membership. Four out of five of the
individually founded open source communities
have formal processes by which an individual is
recognized as a member; one community
recognized both individuals and firms as
separate classes of members. Only one sponsor
founded community project created a nonprofit
foundation with a membership base, while two
others were under development at the time of

our study. After offering external contributors
membership rights, this sponsor experienced
unprecedented growth in participation.
Communities with a membership base provide
members with some voice in formal governance
matters (typically through annual elections and
the right to vote on project wide decisions such
as license or name changes), while non-
membership communities remain either fully
sponsor-controlled or retain ad hoc governances
mechanisms.

3. Membership fee. Two communities (one
individually founded and one sponsor founded)
obtain funds from interested firms by selling
memberships at a range of prices. In general,
membership fees were not adopted by sponsors
trying to create communities, but by those
sponsors trying to create commercial
ecosystems.

4. Release authority. The ultimate test of an
online production community is who makes the
final production decisions. For an open source
community, this decision occurs when software
is released. This authority may vest in the
members, the affiliated foundation or remain
with the sponsor or individual founder. Again
there is a dramatic differences in openness
between autonomous and sponsored projects: the
community holds authority in all but one
autonomous community (Linux), but only in two
of the 12 sponsored communities. Such limited
accessibility appears to reflect the sponsor’s
desire to align the features, quality and schedule
of open source releases to its commercial goals.

Assessing Openness. By creating a
membership organization and the opportunity to
elect leaders, a few sponsors offered potential
contributors the ability to develop a sense of
belonging and become more vested in the
community’s future. The ability to gain
“membership status” was viewed as a
motivational and recruitment tool. Sponsors who
adopted these community design features did so
with the belief that divesting some control was
necessary in order to attract talented
contributors. However, most sponsors did not
create an independent form of governance,
retained exclusive release authority, and final
say on all key community decisions.

- 12 -

Intellectual Property
Sponsored open source communities faced a

potential barrier to external participation not
found in their autonomous counterparts: the fear
that the founder’s desire to profit from
community based production would limit the
benefits that accrued to contributing members.
West (2003) refers to this as a producer’s
inherent tradeoff between winning adoption of a
technology and appropriating the returns from
that technology. For open source communities,
the key attributes of this tradeoff were associated
with the ownership and licensing of the
community produced software:

1. Content ownership. Most communities
that created an affiliated foundation also vest
ownership in the foundation (Linux an
exception), as did two sponsored communities.
For the other sponsored communities, ownership
remains with the sponsor. Ownership of the
content by a foundation provides a credible
assurance to community participants that the
code will remain available to participants in
perpetuity (O’Mahony 2005). The direct
ownership of the code by sponsors in most of
the communities was a clear direct and symbolic
measure of their design to maintain ongoing
control over the terms by which outside
participants access the code.

2. Subproject ownership. For the projects
that allowed creation of new subprojects, the
conditions of access were not necessarily the
same as for the core code. For the five sponsored
projects that allowed subproject creation, in four
cases, ownership of the subproject output was
the same as for the core project (two owned by
the sponsor, two owned by the foundation); for
one sponsored project, the output was owned by
the contributing community members.

3. Software license. 10 of the 12 sponsored
communities use one of the more than 50
licenses approved by the Open Source Initiative.
As Lerner and Tirole (2005) and others have
noted, the most popular open source license is
the GNU General Public License (GPL). This
widespread use and popularity among potential
participants influenced the decisions of two
sponsors — Mozilla and Helix — to offer their
product under both their own license and the
GPL, while other sponsors mentioned the

importance of using a license deemed
compatible with the GPL or the Lesser GPL
(LGPL). Two sponsors used licenses that are as
yet unapproved by the OSI. One community
(Sendmail) was founded using an approved
license (BSD) but the sponsor subsequently
chose to release a major update under a non-
approved license that discriminates against for-
profit users. The last (Sugar) created its own
license (adapted from the Mozilla Public
License) that required publicity for their
technology when used by service providers.4

4. License type. Open source licenses such
as the BSD or Apache license allow recipients to
use the code largely without restriction, while
“free software” licenses (notably the GPL)
compel recipients to return any modifications or
changes (West, 2003). Rosen (2004) classifies
these two types as “permissive” and
“reciprocal”; a few licenses (such as the LGPL)
impose reciprocal obligations on part but not all
of the code. Four of the sponsored communities
in our sample use a dual license strategy to
implement price discrimination, with non-profit
users selecting the free reciprocal license (i.e.
the GPL) and for-profit users customarily paying
to use the software without the reciprocal
obligations (cf. Välimäki, 2003).

Assessing Openness. The ownership of code
was the most dramatic difference between
autonomous and sponsored projects, in that the
sponsor in nearly all cases retained ownership of
the core (if not subproject) code. A subset of the
sponsors used the objectionable restrictions of
the reciprocal license to provide revenues
through a dual license policy, but otherwise the
sponsored and autonomous communities

4 Sponsors of the two unapproved open source

licenses (Sugar, Sendmail) argued that their
licenses largely met the requirements of the
Open Source Initiative, although they did not
submit them for OSI approval. Their use of
unapproved licenses they termed “open source”
stimulated occasional controversy within the
open source social movement, but did not seem
to impair the effectiveness of their community
strategies. In December 2007, SugarCRM solved
this problem by releasing its free software under
GPL Version 3, an OSI-approved license.

- 13 -

followed similar license policies, either using
standard or their own open source licenses.

Discussion
We defined and contrasted two different

types of open source software communities:
those sponsored by corporate organizations and
the more traditionally studied autonomous
(community managed) communities. Our study
had two research questions: how did sponsors
design open source software communities in the
hopes of attracting external participation, and
how did this differ from the design of
autonomous based communities?

By studying the design decisions that
sponsors made when creating a community, we
identified three dimensions that affected
participation: 1) the organization of production,
2) governance, and 3) intellectual property. In
doing so, we showed that the participation
architecture of a technical community is
determined not only by its technical architecture,
but also by community design decisions made
by the community’s leaders. While modularity
in the technical architecture remains important
to enabling participation by reducing the
learning curve or cost of entry (e.g. Baldwin and
Clark, 2006), the aspects of community design
that we identified are also critical to attracting
and enabling participants primarily because they
shape the landscape of opportunities extended.

We showed that sponsors’ community
design decisions on these three dimensions
reflected the inherent tension between two
conflicting goals. On the one hand, firms wished
to retain control over technologies fundamental
to their business success. On the other hand,
providing the opportunity structure for others to
participate was a prerequisite for gaining the
benefits from developing an external
community. Thus, when designing a
participation architecture, firms mediate between
surrendering control and offering opportunities
for outside participation that could lead to
community contributions and growth.

The Role of Participation Architecture in
Growing Sponsored Communities

We discovered that before designing their
own open source software communities, our
informants studied well known autonomous

communities in some detail and made frequent
reference to them. Thus, in the presentation of
our findings, we compared the findings from our
sample to some of these well-known
autonomous communities.

Based both on qualitative data from our
informants and online data from the
communities in our sample, we found a
fundamental tension unique to sponsored
communities: while sponsors recognized that the
key to attracting and retaining participants to
their communities was to provide unfettered
opportunities for contribution, they had an
interest in retaining some controlling influence
over the communities they founded to ensure
these communities remained aligned with
corporate strategy. Managing this tension was a
pervasive concern and illuminates some of the
challenge in using external communities to
pursue open innovation. After identifying the
tension between openness and control, we
identified more precisely how sponsors
reconciled this tension with 11 specific
community building design parameters that
cluster across three dimensions.

From our data, we found that the sponsor-
founded communities could be classified into
one of three distinct groups as sorted in Table 3.
The first group of firm-created communities
either had achieved or were seeking levels of
community participation comparable to those of
individually-founded communities; in fact, two
of the communities (Eclipse, Mozilla)
transitioned from corporate sponsored to become
independent autonomous communities.

At the other extreme, a second group of
communities (the three firm-sponsored dual-
licensed communities) offered what we term a
“fishbowl” development pattern — with the
sponsor offering transparency to outsiders, but
not accessibility to software development. A
third group of communities lay somewhere in
between: experimenting with the provision of
access but not willing to give up key points of
control.

Strikingly, sponsors were far more likely to
provide transparency than they were
accessibility, despite the possibility that a more
controlled governance structure offered fewer
opportunities for leadership and could thus
reduce the sponsor’s ability to recruit

- 14 -

contributors. Community design decisions to
provide either transparency and accessibility had
very different effects. Transparency was cited by
informants as critical to aiding adoption of the
software: a key goal of all sponsors. The effects
of accessibility were more mixed: while
accessibility could potentially enhance the
volume and quality of contributors to a project,
it could also compromise sponsors’ control over
production. For when development was made
fully accessible to external parties, more parties
to decision-making created new dependencies
and coordination costs for software that was
critical to firm product lines.

However, there was no direct evidence of
the direction of causality between the provision
of accessibility and external community
participation. Firms offering less accessibility
could be motivated by a need to retain control, a
belief that there was no benefit to doing so
(because the community would not help in
production anyway), or perhaps diminished
expectations of external participation that
became a self-fulfilling prophecy. Accessibility
is only one of the factors that drive participation,
as the high rate of participation (and adoption)
for the tightly-controlled MySQL community
would suggest.

Most of the sponsored communities
produced software of interest to a large potential
audience of user-adopters. Except for the dual-
license software communities, there seemed to
be little relationship between a sponsor’s license
choices and the overall accessibility of the
community. However, communities that were
less accessible (Darwin, MySQL, Sendmail,
Berkeley DB) seemed to be due to a sponsor’s a
stronger need for control due to a greater fear of
cannibalization of core revenues. Conversely,
four of the most accessible sponsored
communities (Eclipse, Mozilla, OpenOffice,
Helix) produce software facing intense
competition against a well-funded proprietary
alternative, and thus these sponsors were most
concerned with attracting external collaborators
to aid in production and adoption. The
participation architecture offered by these
communities most closely resembled
autonomous communities.

While a few sponsored communities sought
outside participation by emulating key

accessibility characteristics of autonomous
projects (Apache was cited as a notable model),
informants suggested that both creating
accessibility and attracting significant external
resources was a long and difficult process.
Sponsors often approached the challenge in
phases, offering transparency while preparing
for accessibility. As one community manager
trying to guide his community from a
transparent model to a more accessible one
explained, “the transparency and the
communication of what is happening is a
prerequisite for almost anything else”.

Contrasting Sponsored and Autonomous
Communities

Autonomous open source software
communities have received a great deal of
empirical and scholarly attention within the last
decade. However, there has been very little
research on corporate sponsored open source
communities, on how they differ from
autonomous ones, or on how such communities
contribute to a firm’s open innovation strategy.
This research takes a first step towards
answering these questions. By comparing
sponsored communities and autonomous
communities we found some important
commonalities. Both offer access to code that is
guaranteed by an open source license, which fits
the definition set by the Open Source Initiative.
Both also offer a high degree of transparency of
access to that code — without which the rights
to use the code would be useless.

However, our study showed that sponsored
open source software communities are
fundamentally different from autonomous
communities in the potential for goal conflict
between sponsor and community members.
Although both sponsors and members seek
widespread adoption, the primary goal of a
corporate sponsor is profiting from its
investment, while the goal of an open source
community would be improving the capabilities
of the shared technology.

To gain interest from a community of
contributors, sponsors needed to at least provide
transparency. The openness of sponsored
communities differed most in terms of
accessibility, with most sponsors retaining a
privileged (monolithic) rights for some portion

- 15 -

of the community’s decisions. In a few open
cases, the sponsor shared some control with the
community — and when sponsors relinquished
more control to the community, those sponsored
communities were transformed into autonomous
ones.

As consequence, we also found a dramatic
difference between most sponsored and
autonomous communities in terms of design
decision related to accessibility, particularly in
terms of governance. Governance of
autonomous projects was largely pluralistic,
shared widely among community members,
whereas the ultimate decisions of sponsored
communities were (with rare exceptions)
controlled by the sponsor.5

The dichotomy is not complete, because not
all autonomous open source projects provide full
accessibility. Raymond’s (1999) stylized
typology of “The Cathedral and the Bazaar”
contrasts the tightly-controlled BSD projects
with the more open Linux. However, today the
“cathedral” archetype is relatively rare:
Raymond’s criticism (and the success of Linux)
have meant that successful autonomous projects
have largely followed Linux in granting
accessibility to potential contributors. However,
as a practical matter the importance of
community contributions constrains the
accessibility decisions of autonomous
communities more than sponsored ones:
independent communities that don’t attract
contributions will have trouble producing new
software, while sponsors can (and do) sustain
communities with their own resources — as
happened with MySQL and Berkeley DB in our
sample.

5 We use as our “control” group those large,

successful pluralistic autonomous projects best
known to our informants. Like our informants,
we are thus drawing inferences from best
practices rather than a cross-section of
autonomous projects, which limits our ability to
draw contrasts. For example, those autonomous
projects that are less successful in attracting an
external community would have less developed
formal governance than the successful projects
listed in our control group.

Future Research
Our comparative analysis of sponsored open

source software communities and identification
of the theoretical constructs that affect
community design should enable future
comparative work in community innovation.
Our inductively generated framework can help
scholars explicate and articulate differences and
similarities across technical communities
involved in the wide range of production of
shared information goods, whether such goods
are software, reference data (e.g. Wikipedia) or a
travel guide (World66). Future research would
do well to quantify how the design of a
participation architecture affects a peer
production community’s growth trajectory.

Our study focused on corporate sponsored
open source communities. However, we
recognize that an increasing number of
organizations such as private non-profit
foundations, governments, and even
transnational organizations sponsor technical
communities. We would expect that
communities sponsored by government or
nonprofit actors would be more likely to favor
public good ahead of the sponsor’s pecuniary
gain, but face similar tensions between
maintaining control and attracting community
participation and growth.

Firms have long sponsored external
communities of users (such as chat rooms or
bulletin boards) to provide communication with
users, to both diffuse new technology and obtain
user feedback. Sponsorship of external
communities has been used as a source of open
innovation, whether in musical instruments
(Jeppesen and Frederiksen (2006), computer
games (West and Gallagher, 2006; Prügl and
Schreier, 2006) or sporting goods (Franke and
Shah, 2003). Open source software has been
held up as an exemplar of the process of user-
contributed or open innovation (von Hippel,
2001, 2005; West and Gallagher, 2006).
Certainly, the proliferation of autonomous open
source projects has brought a raft of
experimentation and proliferation of community
forms. However, the growing popularity of
sponsored communities suggests that firms can
also sponsor open source communities and
attract external participants. The question that

- 16 -

remains open is under what conditions are firms
more likely to sponsor such communities? Are
these communities alternatives or
complementary to in-house software
development activities? How do they relate to a
sponsor’s broader research and development and
outreach strategies?

While we believe our study makes an
important contribution to our understanding of
sponsored open source communities — and
open source collaboration more broadly —
important questions remain unanswered. For
example, how does the creation of such
communities affect firm business models and
practices more generally? There are many
opportunities for further research on sponsored
communities. One area is the long term impact
of the tension between sponsor and participant
goals — are external participants eventually
discouraged by the sponsor’s ongoing control, or
do sponsors increase accessibility over time as
they learn how to do so without surrendering full
project control.

There are also questions about the changes
of sponsorship over time. The imprinting of an
organization at founding is certainly important
(cf. Stinchcombe, 1965), but control over the
community can change over time. Communities
may transition from autonomous to sponsored,
as has happened when a community founder
(usually a hobbyist-programmer) forms a
company to monetize the value of the code. Or
they may transition from sponsored to
autonomous, often as part of a larger transition
from a proprietary software project to a
sponsored open source community to an
autonomous community. Both Mozilla (now
Firefox) and Eclipse went through such
transitions, but they have received little
empirical examination. What affects the
evolution of such projects? What consequences
do these changes have for the code, the
community and for innovation in general?

 Our work is suggestive but hardly definitive
on the role of technical aspects of openness.
Consistent with Baldwin and Clark (2005), our
informants suggested that technical structure
(modularity) was one key aspect, while the other
(along the lines of software engineering
practice) was coding style. But are these
categories mutually exhaustive? What about

design elements (such as well-documented
programming interfaces) that span both
categories? How would these be measured? The
next step would be to test the predictive value
the constructs we identified. Would our
social/structural measures predict participation?
Or would technical openness have greater
predictive value? Or is it some other factor, such
as product quality, the size of the target market,
or price of the existing alternative?

Finally, as with any study conducted in a
single industry context, there are opportunities to
verify the generalizability of the findings — in
this case, whether the sponsorship processes
identified in open source software apply to other
types of distributed content generating or
innovation-focused online communities. There
are a host of peer production and content
generation communities that have flourished in
recent years – some nonprofit and some
commercial, however how a community’s
participation architecture affects either
community or commercial growth has not been
teased apart. Our hope is that this framing offers
a starting point.

References

Allen, Robert C. 1983. “Collective Invention,”
Journal of Economic Behavior and
Organization, 4 (1), 1-24.

Anderson, Philip and Tushman, Michael, 1990.
“Technological Discontinuities and
Dominant Designs: A Cyclical Model of
Technological Change,” Administrative
Science Quarterly, 35 (4), 604-633.

Armstrong, Arthur and John Hagell 1996, “The real
value of online communities,” Harvard
Business Review (May), pp. 134-141.

Baldwin, Carliss Y. and Kim B. Clark, 2000. Design
Rules, Vol. 1: The Power of Modularity.
Cambridge, Mass.: MIT Press.

Baldwin, Carliss Y. and Kim B. Clark, 2005, “The
architecture of cooperation: Does code
architecture mitigate free riding in the open
source development model? Harvard
Business School Working Paper Series, No.
03-209, June 2005.

- 17 -

Baldwin, Carliss Y. and Kim B. Clark, 2006, “The
Architecture of Participation: Does Code
Architecture Mitigate Free Riding in the
Open Source Development Model?”
Management Science 52 (7), 1116 - 1127.

Baldwin, Carliss Y, Siobhan O’Mahony and James
Quinn, 2003, “IBM and Linux,” Harvard
Business School Case 9-903-083.

Bijker, Wiebe E, Thomas P. Hughes and Trevor
Pinch (Eds). 1987, The Social Construction
of Technological Systems. Cambridge,
Mass.: MIT Press.

Bradner, Scott, 1999. “The Internet Engineering Task
Force,” In Chris DiBona, , Sam Ockman and
Mark Stone, eds., Open Sources: Voices
from the Open Source Revolution,
Sebastopol, Calif.: O’Reilly, pp. 47-52.

Christensen, Clayton M. and Richard S. Rosenbloom,
1995, “Explaining the attacker’s advantage:
technological paradigms, organizational
dynamics and the value network,” Research
Policy 24 (2), 233-257.

Dahlander, Linus., Magnusson, Mats G., 2005,
“Relationships between open source
software companies and communities:
observations from Nordic firms,” Research
Policy, 34 (4), 481-493.

Dahlander, Linus, Wallin, Martin W., 2006, “A man
on the inside: Unlocking Communities as
complementary assets,” Research Policy,
35, (7), 1243-1259.

Edmondson, Amy and E. McManus. 2007.
"Methodological Fit in Management Field
Research." Academy of Management Review
(forthcoming).

Fleming Lee and David M. Waguespack, 2007.
“Brokerage, Boundary Spanning, and
Leadership in Open Innovation
Communities,” Organization Science, 18,
(2), 165-180.

Franke, Nikolaus and Shah, Sonali, 2003. “How
communities support innovative activities:
An exploration of assistance and sharing
among end-users,” Research Policy 32 (1),
157-178.

Franke, Nikolaus and Von Hippel, Eric, 2003,
“Satisfying heterogeneous user needs via
innovation toolkits: the case of Apache
security software,” Research Policy 32 (7),
1199-1215.

Glaser, Barney G. and Anselm L. Strauss, 1967, The
discovery of grounded theory; strategies for
qualitative research, Chicago: Aldine
Publishing.

Godwin, Mike, 1994, “Nine principles for making
virtual communities work,” Wired 2.06.

Hargadon, Andrew B. and Yellowlees Douglas,
2001. “When Innovations Meet Institutions:
Edison and the Design of the Electric
Light.” Administrative Science Quarterly, 46
(3), 476-501.

Hargrave,Timothy J. and Van de Ven, Andrew H.
2006, “A Collective Action Model of
Institutional Innovation,” Academy of
Management Review, 31 (4), 864-888.

Hars, Alexander and Ou, Shaosong, 2002. “Working
for free? Motivations for participating in
open-source projects.” International Journal
of Electronic Commerce, 6 (3), 25-39.

Hertel, Buido, Sven Niedner and Stefanie Herrmann,
2003, “Motivation of software developers in
open source projects: an Internet-based
survey of contributors to the Linux kernel,”
Research Policy 32 (7), 1159-177.

Hunt, Courtney Shelton, and H. E. Aldrich, 1998,
“The second ecology: Creation and
evolution of organizational communities,”
Research in Organizational Behavior 20:
267-301.

“Interview: Guido Van Rossum; Benevolent Dictator
for Life” 2005. Linux Format 64 (March),
pp. 60-63.

Isaak, Jim, 2006. “The Role of Individuals and Social
Capital in POSIX Standardization,”
International Journal of IT Standards and
Standardization Research 4 (1), 1-23.

Jeppesen, Lars Bo and Lars Frederiksen, 2006, “Why
Do Users Contribute to Firm-Hosted User
Communities? The Case of Computer-
Controlled Music Instruments,”
Organization Science, 17 (1), 45-63.

Lakhani, Karim R. and Eric von Hippel (2003) “How
Open Source Software Works: “Free” User-
to-User Assistance,” Research Policy 32 (6),
923-943.

Lakhani, Karim and Wolf, Robert G, 2003.” Why
Hackers Do What They Do: Understanding
Motivation and Effort in Free/Open Source
Software Projects,” September, MIT Sloan
Working Paper No. 4425-03, URL:
http://freesoftware.mit.edu/papers/lakhaniwo
lf.pdf.

- 18 -

Lee, Gwendolyn K. and Cole, Robert E, 2003. “From
a Firm-Based to a Community-Based Model
of Knowledge Creation: The Case of the
Linux Kernel Development,” Organization
Science, 14 (6), 633-649.

Lerner, Josh, and Jean Tirole, 2002. “Some Simple
Economics of Open Source,” Journal of
Industrial Economics, 52 (2), 197-234.

Lerner, Josh, and Jean Tirole, 2005, “The Scope of
Open Source Licensing,” Journal of Law,
Economics, and Organization, 21 (1), 20-56.

MacCormack, Alan and Kerry Herman, 1999, “Red
Hat and the Linux revolution,” Harvard
Business School Case 9-600-009.

MacCormack, Alan, John Rusnak, and Carliss Y.
Baldwin (2006) "Exploring the Structure of
Complex Software Designs: An Empirical
Study of Open Source and Proprietary
Code." Management Science 52 (7), 1015 -
1030.

Markus, M. Lynne, 2007. “The Governance of
Free/Open Source Software Projects:
Monolithic, Multidimensional, or
Configurational?” Journal of Management
and Governance, Journal of Management
and Governance, 11 (2), 151-163.

Mowery, David C. and Timothy Simcoe. 2005.
“Public and Private Participation in the
Development of and Governance of the
Internet.” In Richard R. Nelson, ed. The
Limits of Market Organization. New York:
Russell Sage.

Murray, Fiona and Siobhan O’Mahony. 2007.
“Exploring the Foundations of Cumulative
Innovation: Implications for Organization
Science”, Organization Science 18 (2),
1006-1021.

O’Mahony, Siobhán, 2002. “The Emergence of a
New Commercial Actor: Community
Managed Software Projects,” Unpublished
dissertation, Stanford University.

O’Mahony, Siobhán, 2003. “Guarding the Commons:
How Community Managed Software
Projects Protect Their Work,” Research
Policy 32 (7), 1179-1198.

O’Mahony, Siobhán, 2005. “Non-Profit Foundations
and Their Role in Community-Firm
Software Collaboration,” In Joseph Feller,
Brian Fitzgerald, Scott A. Hissam and
Karim R. Lakhani, eds, Perspectives on
Free and Open Source Software.
Cambridge, Mass: MIT Press, pp. 393-413.

O’Mahony, Siobhán, 2007. “The governance of open
source initiatives: What does it mean to be
community managed?” Journal of
Management and Governance, 11 (2), 139-
150.

O’Mahony, Siobhán and Ferraro, Fabrizio. 2007.
“The emergence of governance in an open
source community”, Academy of
Management Journal 50 (5), 1079-1106.

O’Reilly, Tim. 2005. “The open source paradigm
shift”, In Joseph Feller, Brian Fitzgerald,
Scott A. Hissam and Karim R. Lakhani, eds,
Perspectives on Free and Open Source
Software. Cambridge, Mass: MIT Press, pp.
461-482.

Prügl, Reinhard and Martin Schreier, 2006,
“Learning from leading-edge customers at
The Sims: opening up the innovation
process using toolkits,” R&D Management,
36 (3), 237-250.

Raymond, Eric. 1999. The Cathedral and the Bazaar:
Musings on Linux and Open Source by an
Accidental Revolutionary, Sebastopol,
Calif.: O’Reilly.

Robbins, Jason, 2005. “Adopting Open Source
Software Engineering (OSSE) Practices by
Adopting OSSE Tools,” in Joseph Feller,
Brian Fitzgerald, Scott Hissam and Karim
Lakhani, eds., Perspectives on Free and
Open Source Software. Cambridge, Mass.:
MIT Press, pp. 245-264.

Rosen, Lawrence, 2004, Open Source Licensing:
Software Freedom and Intellectual Property
Law, Upper Saddle River, NJ.

Rosenkopf, Lori and Tushman, Michael L, 1994.
“The coevolution of technology and
organization,” in Joel Baum, and Jitendra
Singh. (eds). Evolutionary Dynamics of
Organizations, Oxford University Press:
New York, pp. 403-424.

Rosenkopf, Lori and Tushman, Michael L, 1998.
“The Co-evolution of Community Networks
and Technology: Lessons from the flight
simulation industry,” Industrial and
Corporate Change 7 (2), 311-346.

Rosenkopf, Lori, Metiu, Anca and George, Varghese
P, 2001. “From the Bottom Up? Technical
Committee Activity and Alliance
Formation,” Administrative Science
Quarterly, 46 (4), 748-772.

Sabel, Charles F. 1984. “Industrial Reorganization
and Social Democracy in Austria,”
Industrial Relations 23 (3), 344-362.

- 19 -

Saxenian, AnnaLee 1994 Regional advantage:
culture and competition in Silicon Valley
and Route 128. Cambridge, Mass.: Harvard
University Press.

Schoonhoven, Claudia B. and Romanelli, Elaine
(eds), 2001. The entrepreneurship dynamic:
Origins of entrepreneurship and the
evolution of industries. Stanford, CA:
Stanford University Press.

Shah, Sonali, 2006. “Motivation, Governance, and
the Viability of Hybrid Forms in Open
Source Software Development,”
Management Science, 52 (7), 1000-1014.

Stinchcombe, Arthur 1965. “Social Structure and
Organizations,” In James G. March, ed.,
Handbook of Organizations. Chicago: Rand
McNally.

Strauss, Anselm L. and Juliet Corbin, 1990. Basics of
qualitative research: grounded theory
procedures and techniques. Newbury Park,
Calif.: Sage Publications.

Tushman, Michael and Rosenkopf, Lori, 1992.
Organizational Determinants of
Technological Change. Research in
Organizational Behavior 14, 311-347.

Välimäki, Mikko, 2003. “Dual Licensing in Open
Source Software Industry,” Systemes
d’Information et Management. URL:
http://opensource.mit.edu/papers/valimaki.p
df.

van de Ven, Andrew. H. 1993. “A community
perspective on the emergence of
innovations.” Journal of Engineering and
Technology Management, 10 (1-2), 23-51.

van de Ven, Andrew, and Raghu Garud, 1989, “A
framework for understanding the emergence
of new industries,” Research on
Technological Innovation, Management and
Policy 4, pp. 195-225.

von Hippel, Eric, 1988. The Sources of Innovation,
New York: Oxford University Press.

von Hippel. Eric, 2001. “Innovation by User
Communities: Learning from Open-Source
Software,” MIT Sloan Management Review
42 (4), 82-86.

von Hippel, Eric, 2005 Democratizing Innovation,
Cambridge, Mass.: MIT Press.

von Hippel, Eric and Georg von Krogh, 2003, “Open
source software and the ‘private-collective’
innovation model: Issues for organization
science,” Organization Science 14 (2), 209-
223.

von Krogh, Georg, Spaeth, Sebastian and Lakhani,
Karim R, 2003. “Community, joining, and
specialization in open source software
innovation: a case study,” Research Policy
32 (7), 1217-1241.

West, Joel, 2003, “How open is open enough?
Melding proprietary and open source
platform strategies,” Research Policy 32 (7),
1259-1285.

West, Joel, 2007. “Value Capture and Value
Networks in Open Source Vendor
Strategies,” Proceedings of the 40th Annual
Hawai‘i International Conference on System
Sciences, Waikoloa, Hawai‘i, p. 176.

West, Joel and Jason Dedrick, 2001, “Open Source
Standardization: The Rise of Linux in the
Network Era,” Knowledge, Technology &
Policy14 (2), 88-112.

West, Joel and Scott Gallagher, 2006, “Challenges of
open innovation: the paradox of firm
investment in open-source software,” R&D
Management, 36 (3), 319-331.

West, Joel and Siobhán O’Mahony, 2005.
“Contrasting Community Building in
Sponsored and Community Founded Open
Source Projects,” Proceedings of the 38th
Annual Hawai’i International Conference on
System Sciences, Waikoloa, Hawaii, p.
196c.

West, Joel, Wim Vanhaverbeke and Henry
Chesbrough, 2006, “Open Innovation: A
Research Agenda,” in Henry Chesbrough,
Wim Vanhaverbeke, and Joel West, eds,
Open Innovation: Researching a New
Paradigm. Oxford: Oxford University Press,
pp. 285-307.

Williams, Ruth L. and Joseph Cothrel, 2000, “Four
Smart Ways to Run Online Communities,”
Sloan Management Review 41 (4), 81-91.

Tables and Figures
Founding

Date Project Type of Software Sponsor Sponsor type Interviews
1983 Sendmail electronic mail server Sendmail Open source startup† 1
1990 Berkeley DB database Sleepycat Open source startup† 2
1995 MySql relational database MySQL AB Open source startup 1
1997 PHP web scripting language Zend Open source startup 2
1998 Mozilla Web browser Netscape Proprietary I.T. firm 3
1998 Jikes Java compiler IBM Proprietary I.T. firm 2
1999 Darwin operating system kernel Apple Proprietary I.T. firm 3
2000 OpenOffice Office productivity suite Sun Microsystems Proprietary I.T. firm 4
2001 Eclipse IDE/application platform IBM Proprietary I.T. firm 6
2002 Helix media streaming RealNetworks Proprietary I.T. firm 2

2003 Chandler information manager
Open Source
Applications
Foundation

Nonprofit corporation 3

2004 Sugar customer management SugarCRM Open source startup 1
 Number of interviews 29

† Originally university sponsored
Table 1: Sample of Sponsor Founded Open Source Communities

 Form of Openness Proprietary Model

 Transparency Accessibility
 Production – the

way that the
community
conducts
production
processes

Ability to read code
and observe or follow
production processes

Ability to change
code directly

Production remains
within a single

corporation

Dimension of
Participation
Architecture

Governance – the
processes by
which decisions
are made within
the community

Publicly visible
governance,

observers can
understand how

decisions are made

Ability to participate
in governance

The corporation
makes all decisions at

its own discretion

 Intellectual
Property – The
allocation of
rights to use the
community’s
output

Rights to use code
and access source

code

Ability to reuse and
recombine code in

the creation of
derivative code

Limited use rights are
granted by the

corporation for a
licensing fee

Table 2: Mapping forms of openness against dimensions of open source

- 21 -

 Production Governance Intellectual Property

Design
Parameter

Live
Code

Access

Public
Commit
Process

Subpro-
ject

Creation
Nonprofit

Foundation
Member-

ship
Member

Fee

Community
Release

Authority

Code
Owned by
Foundation

Subproject
Ownership

Software
License License Type

Autonomous
Apache X X X X individ no X X foundation Apache permissive
Gnome X X X X individ no X X foundation GPL reciprocal
Debian X X – X individ no X X – GPL reciprocal
Linux X * X * – – * * community GPL reciprocal

Linux Standard
Base X X X X firm &

individ X X X foundation GPL reciprocal

Sponsored

Eclipse¶ X X X X firm &
individ X X X foundation Eclipse partly reciprocal

Mozilla¶ X X X X planned – – X foundation Mozilla,
GPL partly reciprocal

OpenOffice X X X planned planned – – – sponsor LGPL partly reciprocal

Helix X X X – – – – – sponsor RPSL,
GPL reciprocal

Sugar X – X – – – – – participants Sugar* partly reciprocal
PHP X X – – – – – – – PHP permissive

Chandler X – – * – – – – – GPL dual
Jikes X – – – – – X – – CPL partly reciprocal

Darwin X * – – – – – – – APSL permissive
MySql X – – – – – – – – GPL dual

Sendmail – – – – – – – – – Sendmail
* dual

Berkeley DB – – – – – – – – – Sleepycat dual

Communities are listed in order of decreasing level of overall openness. ¶ Evolved from sponsored to autonomous.
*Notes on specific communities:

• Linux: allows external committers but the process is not public; has an affiliated nonprofit that influences but does not control the project; release
authority is vested in key individuals; code in the Linux kernel is licensed by contributors to the community but none is owned by the community

• Chandler was founded by a nonprofit
• Darwin: outside commit rights allowed on parallel, experimental code repository
• Sendmail, Sugar: License is not approved by the Open Source Initiative

Table 3: Design Parameters for Autonomous and Sponsored Open Source Communities

