
Distributed Simulation 1988
© 1988 by The Society for Computer
Simulation
ISBN 0-911801-29-4

ModSim: A language for distributed simulation

Abstract

Joel West
Palomar Software, Inc.

P.O. Box 2635
Vista, CA 92083

jww@sdcsvax.ucsd.edu

\

ModSim is a modular object-oriented simulation
language. Although initially implementeµ on single­
threaded processors, it is designed for use !With parallel
MIMD computers. 1

The object-oriented approach provides an
important conceptual tool for designing ~ model and
structuring the relationships between simulated objects.
At the same time, the use of message+passing for
interactions within the model provides a framework for
realizing medium-grain parallelism. .

This paper outlines the design obje~tives behind
ModSim and the alternatives considered in its
implementation, as well as the constnicts deemed
necessary to provide language-level support for
distributed simulation.

1. Introduction

This paper is a summary of a project at CACI to
develop a new simulation programming language,
defined by [Mullarney and West 1987]. This project,
sponsored by the Army Model Improvement Program
Management Office, is an outgrowth of an earlier
feasibility study [West 1985], which concluded that a
programming language designed for distributed
simulation should be based on the object-method
metaphor and incorporate the principles of behavior
inheritance.

2. Design objectives

The ModSim (Modular Simulation) language is a
hybrid object-oriented language that incorporates strong
typing and data hiding for modular development..
Among its fundamental constructs are process-based
discrete simulation cap~bilities and the incidental library
support generally considered necessary for stochastic
simulation.

The basic design is intended to allc?.~ execution of a
ModSim simulation on MIMD CMultip)e Instruction
stream, Multiple Data stream) parallel-processing
hardware, based on a realization of medium-grain
(procedure by procedure) parallelism. Such constructs
are, where possible, compatible with the existing
implementation of the Time Warp operating system
[Jefferson et al 1987] .

The explicit requirements of the sponsoring agency
include:

Alasdar Mullarney
CACI

3344 North Torrey Pines Court
La Jolla, CA 9203 7

ihnp4!clyde!cacilj!alasdar

• Object-oriented development framework
• Discrete simulation using process~s--_ -
• Modular development
• Direct support for expert systems
• Implemented as a translator to a target language

(initially C)
• Complete syntactic validation by translator
ModSim is most similar to Modula-2 [Wirth

1985] and Object Pascal [Tesler 1985], but has several
important concepts not present in either language.

The syntax of a ModSim program resembles that of
Modula-2. The language differs significantly from the
Object Modula-2 proposed analagous to Object Pascal,
most notably in the explicit provision of message-passing
concurrency and support for multiple inheritance. Tiie
language also includes direct support for process-based
simulation.

As with most modern object-oriented languages,
new object types can be defined in terms of existing types
and the proE_erties (behavior) of the prior type inherited
by the new type. ModSim allows the flexibility of
multiple-path inheritance, a rarity among existing object-

__ oriented languages, in part because of implementation and
efficiency difficulties for compiled languages.

155

Within the family of object-oriented languages, the
goals for ModSim are most closely related to those for
software engineering, such as those that led to the
development of Modula-2 and Ada. These include
support for large software development efforts
(100,000+ lines of code) with medium- and large-sized
teams, developed_ and maintained over a period of many
years. The data hiding between objects also encourages
the development of algorithms that can be used for
parallel processing.

3. Declaring Objects

An object type is a structured type similar to a
Modula-2 or Pascal record in that it includes a list of
component fields. Unlike a record type, an object type
may not have variant sections describing different field
layouts.

In addition to component fields, an object type may
also include a group of component procedures, which
describe standard operations to be performed on the
object.

· Operatiop.s on the contents of an object are
performed through these dedicated procedures, which are
known as methods. Methods are invoked using an ASK or
TELL statement, a reference to an appropriate object, the

name of the method, and the method parameters, if any,
asin

TELL theplane TO goTo('Houston');

We call the externally accessible properties of an
object - the mechanism by which other procedures
communicate with it - the object's protocol. The fields
and procedures together describe the properties of the
object.

An object may be declared in terms of one or more
previously-declared object types. We refer to the new
type as a derived type of the existing type(s), while each
of existing types is a base type of the new type. An
underlying type of the new object is either one of the base
types, or an underlying type of one of the base types.

The new type includes all the fields and methods of
its underlying types and thus inherits the properties of
those types. The new type can also define new fields and
methods. If the object has no base type, these are the only
fields and methods defined for that object.

The derived type can also override the definition of
any method from its underlying types by redeclaring the
method with the OVERRIDE reserved word. In such a
case, the new definition replaces the previous one for the
new type and any types derived from it.:. If the type is
derived from multiple base tvpes and a metlfod is multiply
inherited, then that method must be overriden in the new
type.

The implementation of a method is similar to that
for a Modula-2 procedure. All methods for an object
must be grouped within a module with the same name as
the corresponding object, as in:

MODULE PackageObject;
METHOD linearMeasure: CARDINAL;
BEGIN

(* implied argument SELF: PackageObject*)
RETURN height+depth+length;

(* fields of SELF*)
END linearMeasure;

4. Standard Library
ModSim comes with a library of standard object

definitions,,.,including modules for grouping objects,
statistics-gathering, and, of course, simulation.

The user will normally declare the base type of
his/her most simple object as

MyObject = OBJECT

By default, all objects are assumed to be derived
from StandardObject, which provides standard·
component fields and methods. Among objects that
include StandardObject as an underlying type, one
standard property is the ability to belong to a group of
objects, or arbitrary number of groups. Another
standard property is an error protocol, a default
mechanism for handling errors that is, at the same time,
user-extensible. Any such object will accept an error

'

message, which can be overridden by the user to provide
an exception-handling capability.

Objects declared in terms of another object type use
a slightly different declarative syntax, as in

MyProces~:•_= OBJECT (StandardProcess)
\l

5. Grouping Objects
The library includes standard object definitions for

grouping objects in ordered and unordered collections.
A deliberate departure has been made from the

SIMSCRIPT approach towards lists of data structures,
which has several disadvantages. First, any object that
may belong to a list must be declared as such, and may
only belong to one list with the same identifier. .

More significantly from a parallel processmg
standpoint, each SIMSCRIPT data structure cont~ins
within it the direct reference to the next. and previous
structure in the list. This means that if the objects are
different processors, a series of (pro~ably slow) _cros~­
processor references is necessary to fmd each obJect m
the group. .

Groups in ModSim are implemented using hnk data
structures. For each object that belongs to a group, there
is a link containing a reference to that object in the
staiidard system-defined form. The links would remain
on the same processor (and same virtual time) as the
object that owns the group, since they are but a
representational convenience for the state of the gr?UP
object. These links could be used to reference_ any obJect

156

on any processor. _ .
MoiiSim includes iterators to perform operations

on each :members of a group, similar to those of
SIMSCRIPT or CLU.[Liskov 1979]. However, when
used with unordered collections, the iteration block may
be performed in parallel, much as the PAR keyword of
Occam [lnmos 1984] is used to denote a parallel
iteration block.

6. Simulation Concepts
i ,

Exi$ting process-based simulation constructs, s~ch
as those p·rovided by Simula and SIMSCRIPT, provide
for a block-and-wait capability and the transparent
execution of multiple threads of control. Each process is
an object that has a state that c_an be suspe:ided and
resumed, without regard to the implementation effort
required to provide that transparency.

Each . process object (one with
standardProcess as an underlying type) can use a
WAIT statement to await completion of some condition.
The language provides direct support for tw~ conditions,
passing of a specified period of simulated time and the
completion of a method execution. The WAIT statement
can also be used to await an arbitrary condition, which is
indicated by the change in the value of a special type of
monitored field, known as a trigger.

The ModSim process design allows for a process
object to be doing more than one thing at once. It will
may receive multiple messages, and process those

messages simultaneously, some of which will require
time-elapsing sequences of actions.

Each of the operations that a process may engage at
once is termed an activity. The execution of a method for
a process is always part of an activity. An activity
continues until terminated, either by completing a method
or an explicit operation.

The interactions between these activities and the
process (and thus the concept of an activity itself) are
transparent to the programmer in writing simple process
solutions.

However, certain abnormal conditions may require
that all these activities to be stopped. A process may be
interruped, which by default stops any w~iting and
returns. the process to the inactive state.

Other applications will require more 1elaborate
interfaces, such as being able to cleanly terminate only
some of the activities, one at a time. The definition of an
Act iv it yob j e ct type allows reference to these
individual activities, although the detailed impl~mentation
of activities cannot be used. Each ProcessObject has a
group of all its activities.

An activity is either current or waiting; the process
method currentAct i vi ty returns a reference to the
current activity. When an activity terminates:(becomes
inactive), it is deallocated-by the system. Therefore, an
inactive process is one that has no activities.

An activity can be interrupted using the
INTERRUPT statement, as in:

INTERRUPT find.Activity(moveTo);

Interrupting the current activity has no effect.
Interrupting an activity that is waiting will cause it to
execute the exception clause of the WAIT statement. If no
such clause is included, the interrupt will terminate the
activity. A process has a standard method
interruptAll, which interrupts all the activities of
that process.

7. Parallel Simulation
There are several important distinctions that must

be made when examining the object-oriented interactions
between processes in a multi-processor environment.

Interactions in an object-oriented language are, of
course, through method invocation. One important
aspect of the conceptual model is whether each method is
implemented synchronously or asynchronously, that is,
whether or not the object sending the message waits for
receiving object to complete the requested behavior. .

The distinction can often be igno~ed for inter­
process interactions in a sequential envfrbnment. In
SIMSCRIPT 11.5, for example, activating or reactivating
a process (similar to a method call in many ways) is
always asynchronous.

However, in a parallel-processing environment, the .
issue is more important, since the asynchronous execution
of methods offers an opportunity for realizing medium­
grain parallelism, while the synchronous execution of

157

methods provides a formal mechanism for structuring
inter-process time dependencies.

One proposed approach [West 1985] is to have
two types of message-sending operators, one used for
synchronous interactions and another used for
asynchronous interactions.

This is, in fact, the approach adopted by ModSim.
For example,the statement

ASK theplane TO setCourse('Houston');

is assumed to execute instantaneously in simulated time,
and the object sending the message will n,9t-continue
execution until the corresponding method is complete. In
contrast, the method call

TELL theplane TO goTo('Houston');

initiates the requested method (goTo) for the specified
object (thePlane), but the sending object continues
execution immediately.

If one thinks of a ModSim process as a program,
and an activity as a UNIX process, then the TELL
keyword is analogous to the fork function of the
standard UNIX library [AT&T 1986].

8. Time Warp Message-passing

The Time Warp operating system also has two
ways to send a message, but uses a different criterion for
the distinction between the two. The difference between
the two is centered around Time Warp's approach to
maintain the correct time ordering of interactions within
a simulation. ·

Time Warp structures distributed simulations
around time-stamped messages sent between individual
objects. The framework assumes the availibility of each
of both synchronous messages and asynchronous
messages.

However, the existing implementation imposes a
further restriction on each type of message. It attempts to
isolate and identify any message that can cause a side­
effect or change in state. Side-effects exclude returning a
value to the sending object, but include any other change
in the state of the receiving object or another object.
Although Time Warp is event-oriented, advancing
simulated time in a process-oriented language would also
require such a state change and thus qualify as a side­
effect.

The Time Warp o.s. performs optimistic race-.
ahead and time (causality) fault correction through
rollbacks, and identifying potential side-effects allows it
to perform an important suboptimization. By examining
each message in the message queues, the Time Warp o.s.
can identify which messages cause side effects and which
do not. A time fault involving a no-side-effects message
can be handled without rolling back the entire simulation
to the saved state. For example, asking a plane.its position
at time T =20 may only require searching a list of
previous values and changes for the location variable.

In the curre?t implementation of the Time Warp
o.s., not all possible synchronization and side-effect
combinations are allowed. The matrix of available
combinations in shown in Table 1.

Synchronous Asynchronous

side-effects not allowed Event message

no side-effects Query message not allowed

Table 1: Synchronization vs. side-effects in Time Warp

Although not required by the Time Warp
paradigm, the current implementation directly supports
only one type of synchronous message, the type that does
not involve side-effects. Such side-effects include
changing any of the object's variables or sending a
message to another object that causes side-effects.

Such messages are referred to as query messages,
since they are primarily useful for querying the state of
the object - either directly stored values, such as fields,
or computed values, such as estimated time of arrival.
When the sending object transmits a query message to the
recipient, it is always followed by a query response
message, in which the recipient object returns O or more
values to the sender.

This corresponds to the purest form ofside-effect
free functional programming. Unlike procedural
languages which encourage (but do not require) such use
of functions, it also applies to procedures that return
multiple values through variable parameters (such as
Modula-2 VAR), since the restriction is imposed by
operating system primitives rather than the programming
language.

In contrast, any message that causes side effects
must be asynchronous under the current implementation;
Such a message is called an event message. Any event
method can send query messages, but no query method
can send event messages.

9. Message Side-effects In ModSim
-If accepted on its face, the prohibition against

combining a state change with synchronous execution of a
method severely limits the encapsulation of several
categories of operations typical of both simulatio~s and
object-oriented programs.

. A number of coding schemes are possible to work
around these restrictions, but all require significantly
more user code and many have other significant
disadvantages. In general, these work-arounds will tend
to diminish the clarity of sequential program expression
(as advocated by Jackson System Design) that is provided
by the process framework. They also require the client of
a method to know more about its implementation and
reduce the encapsulation of the method.

It would be more, useful to implement the side-

\
\

effect + return value capability directly for the user.
Event response messages could also be emulated by the
programming language library using ordinary event
messages. However, this may obscure useful dependency
clues for the J'ime Warp operating system.

The ModSim language does provide support for
query messag'~s. All function methods in ModSim are
assumed to be synchronous and side-effect free, and thus
can be implemented in Time Warp as query messages.

The possible combinations of synchronization and
side-effects in ModSim are shown in Table 2.

Synchronous Asynchronous

side-effects ASK TELL

no side-effects function method meaningless

Table 2: Synchronization vs. side-effects in ModSim

For synchronization purposes, it is important to
know which methods can advance simulation time. Of
course, methods for non-process objects will always
belong to one of the first two categories.

Therefore, methods would be separated into three
categories of side-effects:

• No side-effects;
• Side-effects that do not advance simulated time;
• Ti~e-elapsing. _
The :use of time-elapsing constructs are, directly

deduced py the compiler from ModSim source
statements.: However, side-effect causing methods must
be explicitly declared, and then the compiler verifies the
absence of side-effects in other methods.

158

10. ComPiarison with Other Languages
ModSim adopts the Object Pascal syntax for

declaring \objects, instance variables (fields), and
methods, as well as its syntax for referencing an inherited
behavior. J:;rom Clascal, ModSim adopts the grouping of
related metqods, adapted to use a Modula-like syntax.

ModSim's syntax for referencing variables and
methods of an object is different from the other languages
listed here. Although somewhat similar to Flavors, it
most closely resembles an earlier proposed language for
concurrent simulation based on SIMSCRIPT
[W~st 1985] .

Like Object Pascal, the terminology of ModSim is
built around the "object type" rather than the "class"
terminology used by most other languages. However,
C++ includes a simple and unambiguous terminology
("base class" and "derived class") for relating class
inheritance, which is used here.

ModSim is a member of the family of typed object­
oriented languages that begins with Simula and includes
both Object Pascal and C++. Unlike Objective-C or
Smalltalk compilers, ModSim attempts to disambiguate

object references at compile time whenever possible.
Instead of the C++ friend concept, private fields

and procedures are obtained by clustering related object
types within a module. In this case, "friends" are object
types, not individual methods, and friendship is always
symmetric. This is_a less rigorous form of data hiding,
but easier to use and does not require the introduction of
additional concepts. ,

Data hiding of the properties of a base type from its
derived type is assumed to be less important than between
two object instances. Among the languages mentioned,
only C++ provides data hiding to prevent access to the
implementation of a base type from its derived typ\s.

The multiple inheritance approach is similaij to that
used by Smalltalk-80 [Borning and Ingalls 19~2]. In
particular, ModSim allows combinations of ful~ types
(instead of the "mix-in" of the Lisp Flavor System
[Weinreb and Moon 19801) and requires theiuse of
named base types to resolve method inheritance
ambiguities. \

With the exception of Simula, none pf the
languages mentioned directly address the topic of
simulation. Smalltalk and C++ acknowledge simulation
as goals, but do not provide simulation as a fundamental
language concept. I

11. References
AT&T. System V Interface Definition, Issue 2, Volume

I, AT&T, Indianapolis, Ind.: 1986.
Barning, Alan and Dan Ingalls. "Multiple Inheritance in

Smalltalk-80," Proceedings of the AAA/, 1982,
234-237

Inmos Limited, Occam Programing Mrmual, Prentice­
Hall International, London: 1984.

Jefferson, David et al. "The Time Warp Operating
System," (unpublished paper). Los Angeles:
UCLA Department of Computer Science, February
1987.

Liskov, Barbara et al. CLU Reference Manual,
MIT/LCS/TR-255, Cambridge, Mass.: MIT
Laboratory for Computer Science, 1979.

Mullarney, Alasdar and Joel West, ModSim: a language
for Object-Oriented Simulation; Design
Specification. CACI technical report, La Jolla,
Calif.: CACI, August 1987.

Tesler, Larry. "Object Pa~cal Report", Structured
Language World. Volume 9, Number3; 1985.

Weinreb, Daniel and David Moon. "Flavors: Message
Passing in the Lisp Machine," MIT-AIM-602,
Cambridge, MA: MIT Artificial In~lligence
Laboratory, November 1980. ,}

West, Joel. Object-Oriented Distributed Simulation,
CACI technical report, La Jolla, Calif.: CACI,
1985.

Wirth, Niklaus. Programming in Modula-2, 3rd ed. New
York: Springer-Verlag, 1985.

159

