
Object-Oriented
Distributed Simulation

Joel West

CACI

Revised Edition
August 1985

This work was performed for the Jet Propulsion Laboratory,
California Institute of Technology, contract number 957101, and
was sponsored by the Army Model Improvement Program Management
Office.

Reference herein to any specific commercial product by trade
name, trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government, the
AMIP Management Office, or the Jet Propulsion Laboratory,
California Insitute of Technology.

2

Object-Oriented
Distributed Simulation

Joel West

CACI

Revised Edition
August 1985

This work was performed for the Jet Propulsion Laboratory,
California Institute of Technology, contract number 957101, and
was sponsored by the Army Model Improvement Program Management
Office.

Reference herein to any specific commercial product by trade
name, trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government, the
AMIP Management Office, or the Jet Propulsion Laboratory,
California Insitute of Technology.

2

Object-Oriented Distributed Simulation

ABSTRACT

This report examines the requirements for an object
oriented, discrete event simulation language for use in
a parallel-processing environment. Such a language
could be used to distribute computation and data on
systems such as the Cal tech Hypercube and JPL 1 s Time
Warp operating system.

The report first summarizes a number of existing and
planned multiple instruction set, multiple data stream
(MIMD) computers. The report also outlines the general
principles for object-oriented programming and dis
tributed simulation.

A proposed language that incorporates these requirements
is then described. The proposed language Language for
Concurrent Simulation has some of the key characteris
tics of Small talk-SO and the Lisp Flavor System. The
language is unique, to the author 1 s knowledge, in
providing both class- and instance-oriented inheritance
of object behaviors in a compiled language. It also in
cludes the SIMSCRIPT process model of object behaviors
as part of its conceputal framework.

3

Object-Oriented Distributed Simulation

4

Object-Oriented Distributed Simulation

PREFACE

This report is the result of a study conducted to determine the
characteristics of a discrete simulation language for use in
parallel processing.

The study is an outgrowth of parallel-processing research being
done at the Jet Propulsion Laboratory for the Army Model
Improvement Program Management Office. That research -- into
the Hypercube computer and Time Warp operating system is in
tended to allow the Army's operations research groups to obtain
high simulation performance at a low hardware cost.

This report also attempts to meet a second goal of the AMMO
sponsored research, which is to identify and describe a new gen
eration of simulation tools for the development of large produc
tion combat models. The author is convinced that the language
described herein is both feasible and highly desireable for
simulation modelling.

CACI would like to thank JPL for its decision to sponsor this
study. We also thank Jack Tupman and Dr. Garrett Paine of JPL
for their valuable analysis of our preliminary results. Fred
Wieland of JPL patiently explained the details of the current im
plementation Time Warp operating system.

Special thanks are due to Professor David Jefferson of UCLA for
providing information on Time Warp concepts and discussing his
ideas on distributed simulation.

CACI also wishes to thank AMMO for its interest in the
Without the encouragement of Harry Jones and Col.
Wiersema, this study would never had taken place.

study.
Kenneth

Thanks go to Dr. Wilbur Payne and Jesus Carillo, of the TRADOC
Operations Research Activity, for guidance on the Army's future
simulation plans. Also, Jim Peters and members of the Simulation
and Computer Support Division of the TRADOC Systems Analysis Ac
tivity provided valuable information about existing Army
simulations.

Dr. Ed Russell and Glen Johnson of CACI provided assistance from
their wealth of experience in simulation and simulation
languages. Dr. Alasdar Mullarney of CACI N.V. slipped away from
pressing deadlines to sharpen some of the details contained
herein.

5

Object-Oriented Distributed Simulation

Finally, I would like to offer my sincerest thanks to Professor
Antonio Elias and Dr. John Pararas of the Massachusetts Institute
of Technology. Besides sharing their valuable expertise in
Small talk and the Lisp Flavor System, Chapter 3 draws heavily
from their work [Elias 1985]. The ongoing dialogue in the lan
guage design proved invaluable, and the concept of multiple in
heritance in the proposed language owes its existence to their
persistent efforts.

Joel West
La Jolla, California
August 5, 1985

6

TABLE OF CONTENTS

Preface

Chapter 1: Background for the Report

1.1 The Army Model Improvement Program
1.2 Hypercube-Time Warp Research
1. 3 CACI
1.4 Goals of this Study

Table of Contents

Chapter 2: Parallel Architectures for Distributed Simulation

2.1 Parallel-Processing Hardware
2.1.1 Caltech Hypercube
2.1.2 Intel Personal Supercomputer
2.1.3 INMOS Transputer
2.1.4 BBN Butterfly
2.1.5 Multi-CPU Mainframes
2.1.6 Other MIMD Systems
2.2 Parallel-Processing Software
2.2.1 Time Warp
2.2.2 Chandy-Misra
2.2.3 Dataflow Languages
2.2.4 Occam
2.3 Design Objectives

Chapter 3: Basics of Object-Oriented Programming

3.1 The Object-oriented Programming Concept
3.2 Objects Have Local State and Functionality
3.3 Generic Operations on Objects
3.4 Inheritance of Attributes and Behavior
3.5 Message Forwarding and Instance-Based Inheritance
3.6 Desirability of Object-oriented Programming

7

Table of Contents

Chapter 4: A Language for Concurrent Simulation

4.1 Background of SIMSCRIPT II.5
4.2 Objects in LCS
4.2.1 Declaration of Objects
4.2.2 Referencing Object Attributes
4.2.3 Collections of Objects
4.2.4 Object Variables
4.2.5 Instantiation of Objects
4.3 Method Routines
4.3.1 Declaration of Methods
4.3.2 Arguments to Methods
4.3.3 Local Variables In Object Methods
4.4 Message Passing
4.4.1 Message Synchronization
4.4.2 Message Side-effects
4.5 Class-based Inheritance of Object Behaviors
4.6 Simulation Object Classes
4.6.1 Time-elapsing Methods
4.6.2 Object Synchronization
4.7 Instance-based Behavior Inheritance
4.7.1 Class Variables
4.8 Instance-oriented Modular Programming
4.8.1 Declaration of Child Objects
4.8.2 Use of Child Objects
4.9 Durable Objects
4.10 Other Structured Programming Constructs
4.11 Deferred Language Issues

Chapter 5: Distributed Simulation using LCS

5.1 Parallel vs. Sequential Executions
5.2 Referencing Distributed O~jects
5.3 Distributing Data
5.3.1 Global data
5.3.2 Distributed Collections of Objects
5.4 Distributing Computations in a Simulation
5.5 Non-Determinism in Distributed Simulation
5.6 Interfaces to Time Warp

Chapter 6: Conclusions and Recommendations

6.1 Hardware and Software Recommendations
6.1.1 Hardware Systems
6.1.2 Distributed Simulation Paradigms
6.1.3 Simulation Language
6.2 Recommendations for Further Directed Research

8

Notes

Glossary

References

Appendix A: A Summary of LCS Concepts

Appendix B: Existing Object-Oriented Languages

B.l SMALLTALK-80
B. 2 SIMULA
B.3 C++
B.4 Object Pascal
B.5 Ross
B.6 The Flavor System

9

Table of Contents

10

CHAPTER 1: BACKGROUND FOR THE REPORT

1.1 The Army Model Improvement Program

Reflecting its significant investment in discrete-event
simulation, in 1983 the Department of the Army issued a revised
Army Regulation 5-11, detailing the Army Model Improvement
Program. As specified in [Army 1983], the regulation provides
for the Army Model Improvement Program Management Office (AMMO)
to coordinate efforts to improve the effectiveness of the Army's
simulation groups.

Through research in both performance and productivity, AMMO hopes
to meet these objectives:

* Increase productivity in model development
* Easier maintenance of major models
* Improved capability for modeling complex systems
* Develop capability to run large models faster

One of the current problems is that, at the current level of
complexity, simulation scenarios are currently far too slow for
the available computational resources. For example, the CASTFOREM
model currently requires 20 hours of dedicated VAX-11/780 com
puter time ("cpu time") per simulated engagement. Twenty such
engagements are required per scenario for statistical validity.

Current research in computer hardware suggests that the perfor~
mance of existing processing units can be significantly increased
only at exceptional cost. Many researchers feel that cost
effective increases in raw computing power should instead be
sought by developing hardware and software to support parallel
processing techniques.

This approach would appear to offer great promise for large
military simulations. In general, the systems being modeled have
a large number of parallel actions -- by tanks, planes, trucks,
men, etc. that will also be found in the execution of the
simulation.

11

Object-Oriented Distributed Simulation

Table 1-1 lists pertinent information on a number of significant
Army-sponsored models, including three models in the current AMIP
plan: FORCEM, CORDIVEM, and CASTFOREM. The table shows the num
ber of objects in each simulation as an indication of potential
concurrency. It also lists each model's size, to indicate the
minimum hardware resources necessary to support the model.

Size of model Number of
Agency Model Lines Memory active objects

TRASANA CASTFOREM 200,000 20 mb 700
VIC 40,000 n.a. 400

CAORA CORDIVEM 200,000 15 mb 2,500
CAA FORCEM 110,000 6 mb 3,000
CAA/ARMTE DEWCOM 23,000 5 mb 800
CAA/USAWC JTLS 120,000 25 mb 300-2,500

Table 1-1: Major Army-sponsored models

In Fiscal Year 82-83, the Army Model Improvement Program Manage
ment Office (AMMO) began funding research to explore promising
techniques for exploiting this concurrency through the use of
parallel-processing computers. This research has largely taken
place at the Jet Propulsion Laboratory in Pasadena, Calif.

A major objective is to identify software methods for effectively
using parallel-processing computers built upon a large number of
inexpensive microprocessors. A network of 100 high-performance
microprocessors -- each offering a speed of one million instruc
tions per second (MIPS) -- would possess the same raw computa
tional power as a single 100 MIPS supercomputer, but at a far
lesser cost. However, that raw power cannot be used to increase
the throughput of a single simulation run, unless techniques are
developed for discerning at least a 100-fold parallelism in the
model.

AMMO is also charged with exporing new simulation technologies
for Army applications. Funded research in this area has already
endorsed the concept of object-oriented simulation based on a
system of behavior inheritances [Nugent 1983], although the par
ticular language evaluated was found to be too slow for current
applications.

12

Background for the Report

1.2 Hypercube-Time Warp Research

As noted earlier, AMMO has sponsored research at JPL in the
general field of parallel-processing. That research has focused
on the issue of effectively using the inexpensive raw computing
power that can be obtained by combining a large number of
microprocessors. Such use is predicated on exploiting the in
herent parallelism available in a simulation.

The JPL team is using a Hypercube system originally developed by
Caltech physicists. Based on standard microprocessors, a 32-CPU
Hypercube has the raw power of six VAX-11/780's. Of course, this
raw power is not the same as the increase in effective
throughput, but the actual goal is to maximize the throughput ob
tained per dollar spent. If the Hypercube only had 15%
utilization, or approximately the same power as a VAX but only
cost one third as much, then it could be considered to be a
qualified success. More importantly, the Hypercube architecture
offers extensibility: the design is feasible for 1,000-node or
even larger systems.

The software solutions being investigated at JPL are based on the
concept of "virtual time" and the Time Warp mechanism of resol v
ing virtual time. The original research in this area was done at
the Rand Corporation [Jefferson 1983] by David Jefferson (now at
the UCLA Department of Computer Science) and Harry Sowizral.
Time Warp offers a solution -- perhaps the only one currently
available -- towards making effective use of a large number of
parallel processors.

The JPL team has implemented a prototype of the Time Warp operat
ing system as a VAX-based simulator in C. It is also implement
ing the "COMMO*" communications model in C. The group also has
plans to do a best-case performance estimate of the model through
the critical-path analysis techniques described in [Berry 1985].

Both the Hypercube and Time Warp are discussed in greater detail
in Chapter 2.

1.3 CACI

CACI was founded in 1962 to provide instruction in the SIMSCRIPT
I language developed at the Rand Corporation [Markowitz 1963].
Since that time, the company has been active in the area of
military simulation, having developed simulations for all three
branches of the armed forces.

13

Object-Oriented Distributed Simulation

CACI has also worked with Defense Department groups developing
their own simulations, both through courses and through consult
ation in support of SIMSCRIPT I.5 and SIMSCRIPT II.5 compilers.
The firm currently maintains simulation compilers across a
spectrum of mainframe and microcomputers, as well as more
specific simulation tools, such as those for computer and com
munications networks.

Late in 1984, CACI was hired by JPL to study the requirements for
developing a parallel-processing simulation language. This
report is a summary of the results of that study.

1.4 Goals of this Study

Based on the requirements of the study's sponsors, the goals of
this study were to identify a solution in the following three
areas:

1. To increase the ease of maintaining and developing
major combat simulations;

2. To support the execution of such simulations in a
parallel-processing environment, particularly on
the Hypercube under the Time Warp operating system;
and

3. To maintain compatibility with existing Army
simulation models and modelling teams, if not for
syntax, then at least for basic simulation
concepts.

The end result of this study is a detailed analysis of the
specifications for a simulation language to meet these criteria,
as well as the preliminary description of an object-oriented lan
guage that fits those specifications.

Chapter 2 describes the available parallel-processing hardware
and software systems and concludes with the design objectives for
the new language. Chapter 3 summarizes the basic principles of
object-oriented programming, including features common to exist
ing object-oriented languages. Chapter 4 describes how those
principles are applied in the proposed language.

Chapter 5 describes the use of the language in a parallel
environment, with particular emphasis given to distributing the
simulation under the Time Warp operating system. Finally, Chap
ter 6 summarizes the author's conclusions and recommendations.

14

CHAPTER 2: PARALLEL ARCHITECTURES FOR DISTRIBUTED SIMULATION

2.1 Parallel-Processing Hardware

The popular interest in high speed computing has focused on so
called "supercomputers", such as the Cray X-MP and the CDC Cyber
205. These systems offer the fastest available computational
speed for sequential problems. However, their primary speed ad
vantage comes when problems have been expressed as a matrix of
related equations; such computation are generally referred to as
vector (or array) processing.

For example, the performance of a Cray X-MP-1 has been measured
at 21 million floating point operations per second (MFLOPS) when
operating as a sequential processor, but increases to 134 MFLOPS
when the problem is appropriately vectorized [Dongarra 1985].
The improvement of the Fujitsu VP-200 was even more dramatic,
from 19 to 220 MFLOPS in the same study. The latter figure rep
resents 150 times a VAX-11/780, the common unit of computation
measurement in scientific and engineering computing.

Auxillary array processors are also available for conventional
mainframe computers. In either case, this speed can be effec
tively utilized for problems that can be expressed in matrix
form, such as solving large systems of linear equations. The
performance improvement will not normally be found when solving
problems of a more general algorithmic nautre.

Unfortunately, only a limited class of problems in discrete
simulations lend themselves to such vectorized formulations.
Line-of-sight calculations, visibility and ranging are examples
of areas that could benefit from array processing. But in a
typical combat simulation, no single group of calculations oc
cupies a majority or plurality of the computing resources. Ex
isting models are slowed by such general problems as decision
tables, intra-unit interactions and event queuing.

15

Object-Oriented Distributed Simulation

This suggests that speed improvements would best be gained by
replicating general purpose-computers. This is commonly referred
to as a multiple instruction stream, multiple data stream (MIMD)
system. If processing and its role in the system is ident'I'CB:I,
the system is termed homogeneous. Configurations are also pos
sible with one processor acting as a master or control processor
and the remaining processors functioning as computational slaves.

One measure of the effectiveness of a paralell-processing system
is utilization, or the percentage of the overall computing power
(for all processors) spent doing useful work. However, a more
meaningful measurement is the overall increase in throughput, or
the amount of useful work done by the system. If the individual
processor nodes are inexpensive enough, a low-utilization 64-node
system may still be more cost-effective than a single-processor
mainframe.

The issue of measuring the potential performance of parallel sys
tems is also confused by the wide range of standards available
for comparing the performance of the system or its components.
The unit of MFLOPS is commonly used in measuring floating point
performance, although the number can be used for both single
precision (typically 32-36 bits) and double-precision (60-72 bit)
calculations. Performance can also be measured in terms of mil
lions of instructions per second (MIPS), which can be used as a
ruler for data accessing and integer-calculations.

Where simulated time is maintained as a floating point number -
the most common approach in general-purpose simulation languages
-- floating point performance (MFLOPS) is usually the limiting
factor in system performance. However, simulations with complex
decision logic or elaborate character string manipulations may
benefit significantly from an increase in integer performance
(MIPS).

2.1.1 Caltech Hypercube

The Hypercube (or "Cosmic Cube," as it is termed in [Seitz 1985])
was developed at the California Institute of Technology and is
based on ~homogeneous MIMD message-passing architecture. A net
work of 2 nodes is logically organized in anN-dimensional cube.
Each node is connected to N other nodes in an isotropic fashion,
and no node is more than N nodes away from any other node.
Figure 2-1 shows the toplogy of three-dimensional hypercube.

16

Parallel Architectures for Distributed Simulation

Figure 2-1: Topology of an eight-node Hypercube

Nodes communicate entirely by message passing; no multi-ported or
shared memory is available. Communication with each neighbor
node is via medium speed (250k bytes/second), bi-directional
asynchronous input/output channels.

The Hypercube has two development and control hosts. A VAX-
11/780 running VMS contains the software development tools and
the intermediate host, which controls the operations of the
network. Programs are edited and cross-compiled on the VAX, then
downloaded via the intermediate host to one of the Hypercube
nodes. The inter-node network is then used to route the program
and data to each of the appropriate nodes.

17

Object-Oriented Distributed Simulation

Beginning with a four-node prototype, samples of up of 64 (26)
nodes have been built. The current version ("Mark II") consists
of a cabinet with 32 single-board processors mounted in a rack.
Each node has a single-board with roughly the processing power of
an IBM PC. An Intel 8086 microprocessor and 8087 floating point
co-processor each run at 5 mhz, using 256k bytes of RAM memory
and 8kb of ROM. Each node has roughly 20% of the processing
power of a VAX-11/780.

Subsequent versions ("Mark III") have been proposed to use a
Motorola 68020 CPU as a main processor. The design also includes
a second 68020 as an input/output processor, a 68881 numeric co
processor and a minimum of 1 megabyte of memory at each of 32
nodes. Such a node could be expected to be roughly equivalent to
1.2 VAXes, 1 or a six-fold improvement over a comparable Mark II
configuration.

With the first prototype completed in early 1982, the Hypercube
has been, to date, applied to classical problems of math and
physics. It is supported by an applications environment written
in C and an inner kernal code in 8086 assembly language.

2.1.2 Intel Personal Supercomputer

The Intel Personal Supercomputer
tion of the Hypercube design.
1985, the systems were due to be
1985.

("iPSC") is another implementa
Publicly announced in February

shipped in the second quarter of

Each node of the iPSC consists of a board containing the Intel
80286 processor with an 80287 co-processor, and 512kb of RAM.
Each node has eight Ethernet communication links, seven of which
are used f9r inter-node communications -- hence limiting the sys
tem to 2 nodes. User access is through an Intel 310
microsystem, which runs the UNIX-like Xenix operating system on
an Intel 80286 processor.

The iPSC systems are configured in cabinets of 32 boards, so four
cabinets are required for the maximum 128-node system. The iPSC
d5 is a 32-node system, while the -d6 and -d7 offer 64 and 128
nodes, respectively. System prices are comparable to medium- and
large-sized minicomputers. To increase the RAM to up to 4
megabytes per node, every second processor board can be replaced
with a memory board. The price of a 16 x 4mb system would be
slightly less than a 32 x 512kb system, and so forth.

Unlike the Hypercube, the iPSC offers a global communications
channel from the host to the network. Using the eight Ethernet
interface chip on each board, this channel can be used for broad-

18

Parallel Architectures for Distributed Simulation

cast messages to the various nodes, or for intially distributing
program and data across the network.

2.1.3 INMOS Transputer

INMOS Ltd. of the United Kingdom has announced plans to develop a
series of semiconductor components specifically designed for
parallel processing. Because these microcomputers are intended
to be used as basic building blocks -- much as happened with
transistors in the 1960s -- the company has dubbed its component
the "transputer."

The first chip planned is the IMS T424 transputer. A 32-bit
microprocessor, it claims a throughput of 10 MIPS [Wilson 1985].
Each T424 provides four pairs of high-speed full-duplex data
channels. Raw throughput of 10 megabits/second is possible on
each channel, although with protocol overhead the effective
throughput is approximately 750k bytes/second. Transputer sys
tems are intended to rely on these channels for inter-node
communication, without benefit of shared memory.

The T424 is designed for use in distributed systems arranged in
two-dimensional grid architectures. In a hypercube
configuration, the four-channel restriction would limit it to a
16-node system. More i/o channels are planned in future
transputers.

Significantly, INMOS Ltd. does not plan to make machine-language
specifications available for transputers, in order to allow ar:
chitecture implementation changes in future systems. Instead,
transputers are directly programmed in Occam, a new medium-level
language developed by INMOS for the direct support of parallel
processing. (See Section 2. 2)

2.1.4 BBN Butterfly

The Butterfly Multiprocessor was first produced in 1981 at Bolt,
Beranek and Newman under the sponsorship of the Defense Advanced
Research Projects Agency (DARPA). It was originally intended as
a packet speech multiplexor for satellite communications, and has
primarily been used to implement packet-switching networks.

Most Butterfly sy sterns have be en configured as 10 and 16-
processor systems, although a 128-processor system has been built
[Goodhue 1985]. The current implementation has a built-in limit
of 256 nodes due to single-byte addresses, although there is no
theoretical impediment to building a 1,000-processor machine.

19

Object-Oriented Distributed Simulation

Each processor board consists of a Motorola 68000 processor with
256kb RAM, supported by memory management hardware and an i/o
bus. The i/o bus supports both high-speed DMA transfers and the
Intel Mul tibus standard. Additional boards may be added to the
node to support up to 4 megabytes of memory or other i/o devices.

The memory of each node is shared throughout the system, and the
fundamental communication between processors is through use of
the shared memory. The processors independently execute instruc
tions from their local memory, but may also reference memory on a
remote processor. It is, of course, implicitly assumed that
local references would comprise the majority of all memory
accesses.

The nodes are connected through the Butterfly Switch (see Figure
2-2), which combines the techniques of packet switching and sort
ing networks. The data rate through a single switch path is 32
megabits per second, and the total bandwidth grows "almost"
linearly with the number of nodes.

Communication protocols across the switch support:

1. Single-word reads and writes
2. Bulk transfers of data at the full switch bandwidth
3. Various primitive transactions between node controllers,

such as queueing, signalling, etc.

The tightly-coupled architecture means the penalty for accessing
shared data structures is less severe than with message-passing
systems. A remote read of a single 32-bit quantity is five times
as sJow as a local read, while the ratio for writing is only
3: 1. The machine's designers say the Butterfly can use algo
rithms more similar to those of a single-CPU system, with less
attention paid to partioning the problem for a distributed en
vironment that with a conventional message-passing architecture.

Software cross-development is done from a VAX host. An Apple
Macintosh personal computer is used as a console terminal and can
also be used to boot applications.

The Butterfly is supported by the "Chrysalis" operating system,
which is coded in the C programming language, a medium-level lan
guage developed to implement the UNIX operating system. Planned
system tools include implementation of Ada and Common Lisp cross
compilers.

20

Parallel Architectures for Distributed Simulation

0
u

n Switch t
p

node p
u u
t t

0
u

n Switch t
p

node p
u u t t

0
u

n Switch t p
node p

u
t

u
t

0

u
n Switch t p

node p
u u t t

0
u

n Switch t

node p
u
t

0
u

n Switch t
node p

u
t

0
u

Switch t
node p

u
t

0

u
n Switch t

node p
u
t

No matter which line It enters on, a packet will exit
at the output line given by Its 4-blt binary address

Figure 2-2: The Butterfly Switch

21

DO DO

DO 01

DO 10

DO 11

01 00

01 01

01 10

01 11

10 DO

10 01

10 10

10 11

11 DO

11 01

11 10

11 11

Object-Oriented Distributed Simulation

2.1.5 Multi-CPU Mainframes

The DEC VAX-11/782, Gould/SEL PN9080 and Sperry 1100/84 are
recent examples of mainframe manufacturers attempting to extend
their top-end machine with a small number of identical processors
(2 , 2 , and 4 , r e spec t i v e 1 y) • M o s t of the em ph as i s by the
hardware vendors has been on improving the overall throughput of
a multi-user system, rather than the coordination of these
processors for a single job.

In the case of the Gould and DEC systems, the additional proces
sors are compute-only slaves that cannot perform input/output
operations. The master CPU handles interrupts and data transfers
for both processors, leaving the slave free to work on compute
intensive problems. All memory is shared between the two
processors.

Figure 2-3 shows a diagram of the dual-processor PN9080, which
comprises a central processing unit (CPU) and an internal
processing unit (IPU). Programs are executed in the IPU until
reaching an input or output request. Control of the task is then
transferred to the CPU, and the IPU begins executing another
task. On the average, the dual-processor configuration records
an 80% improvement in throughput over a comparable single-CPU
system, from 5 MIPS to 9 MIPS.

maiD mamarg

CPU IPU

Figure 2-3: A Dual-Processor Gould 9080

22

Parallel Architectures for Distributed Simulation

The Sperry 1100/80 series allows a number of identical computa
tional p roc e sso rs to be added to the same sys tern; a dual
processor system is referred to as an 1100/82, while the 1100/84
contains four CPU's. In addition, any number of input/ output
processors can be added to the system; all i/o operations are
handled by these processors. All processors -- both CPU's and
IOP' s -- share common memory. A suspended system task will be
transferred to the next available processor of the appropriate
type, and thus can sequentially use any or all of the processors
in the system.

Even less coupled are independent CPU's that share some or all of
the main memory. One example of this is the dual VAX-11/780 sys
tem at the SWG lab of the Army Combined Arms Operations Research
Ac ti vi ty (CAORA), in which one CPU has been used as a graphics
post-processor for a simulation running on the second.

In such higher-level coupled systems, the overhead of the host
operating system would tend to interfere with using the system to
run a single tightly-coupled distributed simulation. However,
research into future configurations along these lines is being
actively pursued by mainframe computer manufacturers; future sys
tems may not bear this liability.

2.1.6 Other MIMD Systems

Intel is not the only organization planning to implement a system
based on the Hypercube architecture. Inspired by the work of
Seitz and the earlier [Millard 1975], Los Alamos National
Laboratories is in the process of implementing a 16-node system
based on a 10 MHz National Semiconductor 32032 and associated
support chips. With two 10 MFLOP floating point processors at
each node, the system would offer a raw computing power of 320
MFLOPS. The 16-node configuration is the first phase of a
planned, 1,024-node system.

Each node of the LANL system would be supported by 16mb of main
memory and a dedicated 512mb hard disk. Inter-node communication
would be through as much as 64kb of shared memory for each link.
Messages would be transmitted between nodes by using a 20
Mbytes/sec DMA channel to copy data to the shared memory, al
though some dat~ could "1 i ve" in the shared memory and thus in
both processors. Classes of applications range from Monte Carlo
simulation to artifical intelligence and number theory.

23

Object-Oriented Distributed Simulation

Another mammoth planned MIMD machine is the New York University
"UltraComputer," designed to include a 4096 nodes[Kozlov 1985].
Each node would contain a Motorola 68020, floating point
coprocessor, memory management unit and several megabytes of
memory. The topology of the node connections is the same as for
the Butterfly, and the MMU's implement quasi-shared memory, as on
the Butterfly. The system is intended to be used for time
stepped simulations with large-scale parallelism, including
numerical weather prediction.

A number of systems are planned around the Dataflow CC'l.Current
processing architecture, as discussed in Section 2.2.3.

2.2 Parallel-processing Software

For simulation, the most fundamental design point is whether
simulation time is identical or different for the various CPU's
in the system.

If the simulation uses a principle of synchronous time, then all
processors are always synchronized to the same simulated time.
This simplifies coordination problems significantly, but is·
sui table primarily for time-stepped simulations where the sym
metry of the physical system is reflected in the computer system
-- for example, 16 CPU's simulating 16 identical factory lines.
When used with less well-behaved asymmetric parallelism, the
time-stepped synchronous approach would tend towards low utiliza
tion of many processors.

For this reason, much of the research for distributed simulation
has focused on parallel-processing with asynchronous time. In
such a system, there is no guarantee that the simulated time on
one CPU corresponds to that on another CPU. Processors may race
ahead or lag behind in simulated time, depending on their
workload. The problem of the parallel-processing system then be
comes one of synchronizing activities on the various CPU's where
necessary, and assigning the work load to each processor.

2.2.1 Time Warp

Originally developed by Jefferson and Sowizral at the Rand Cor
poration [Jefferson 1983] as a prototype simulator on Xerox Dol
phin workstations, the Time Warp principle is currently being
implemented by a research group at the Jet Propulsion Laboratory
in Pasadena, California.

24

Parallel Architectures for Distributed Simulation

As the name would suggest, Time Warp uses a relativistic concept
of time to coordinate parallel-processing computations. Jeffer
sion uses the term "virtual time" to refer to the asynchronous
concept of time in the simulation. As noted earlier, the use of
asynchronous time is postulated by many approaches to distributed
simulation; Time Warp is distinguished by two additional
characteristics:

1. Time Warp relies on implicit synchronization. The user
is not required to declare synchronization points.
Instead, the Time Warp mechanism works on the assump
tion that a running simulation is properly synchronized
until evidence to the contrary is found. In this way,
Time Warp can be seen as taking an "optimistic" view of
parallelism, while alternative distributed simulation
systems adopt a "pessimistic" view.

2. Because the Time Warp system will eventually find its
optimistic assumptions of synchronization not totally
correct, a simulation model running under Time Warp
will periodically experience a rollback, in which all
computations for one or more objects will be undone and
retried.

It is the lack of explicit synchronization on the user 1 s part
that makes Time Warp an important alternative. The manual
synchronization of 3,000 objects occupying 128 processors
requires a degree of sophistication likely to be absent in most
users. The Time Warp mechanism automatically detects
synchronization and corrects cases where synchronization has
failed.

Unfortunately, the price for this assistance by the system is a
program execution environment that is radically different from
that found on a single-CPU system. In addition, without some im
portant information provided by the user 1 s program, simulation
language and/or the operating system, many applications would
find that the Time Warp overhead could swap any performance
benefit gained through concurrency.

The basic framework of Time Warp is an object-oriented system
(see Chapter 3) with time-stamped messages communicating between
the objects. These objects are referred to as "processes" in
[Jefferson 1985]. To avoid confusion with the use of that term
from a simulation language standpoint, we will instead use the
unambiguous term task, !hich conveys the same meaning in an
operating system context.

25

Object-Oriented Distributed Simulation

Each task has its own clock, which is not usually synchronized
with the clock of other tasks in the system. The value of simu
lated time at each task is referred to as local virtual time.
Each inter-task message is stamped with the local virtual time of
the sender and the simulated time it is to be processed at by the
recipient task.

Simplifying the description somewhat, Time Warp requires that
most messages be processed in order of increasing time. As with
more conventional discrete event systems, the processing of a
message for a particular simulated time changes the LVT of task
to be that time.

Receipt of a message out of sequence --before the task's current
virtual time -- causes a rollback to the time of the message.
The rollback restores the state of the task by reloading its lo
cal data from a saved snapshot.

Once restored, the task re-runs its simulation from that point
onward using the new information. All previous incoming messages
have been saved, of course, to make it possible to re-execu te
those messages in addition to the new message causing the
rollback.

Meanwhile, the task must undo all the effect it has had on other
objects during the cancelled scenario for the given time period.
In the current implementation [Jefferson 1984], the Time Warp OS
compares the messages generated in the second pass through the
period with a list of messages generated the first time through.
Again being optimistic, only those messages that do not re-occur
must be undone. Jefferson feels that such lazy cancellation is
less likely to cause deadlocks, in addition to the obvious reduc
tion in message overhead from the alternative -- which is to can
cel all the old messages when the rollback is detected.

If a message is n?t repeated in the later scenario and must be
undone, Time Warp sends an antimessage to the original recipient.
The message is identical to the original message in all aspects,
except for a "message sign" field, which is negative. If the
anti-message and original message arrive at the destination
before they can be processed, they mutually "annihilate" each
other and disappear from the system. If an antimessage arrives
at a task and the original message has already been processed,
this antimessage causes a secondary rollback for the recipient
task to time of the message.

26

Parallel Architectures for Distributed Simulation

Progress in the simulation is measured by global virtual time,
calculated by Time Warp as the greatest lower bound of the local
virtual time of all tasks. Because no task can have an LVT
before the global virtual time, it is not possible to send ames
sage with an arrival time earlier than the GVT. This sets a
lower bound on the simulated time of rollbacks and, in fact, all
housekeeping information (saved snapshots, message lists, etc.)
from earlier than the GVT is discarded.

However, any action in the simulation later than the global vir
tual time is subject to rollback and must be considered tentative
in nature. Input/output tasks therefore must queue all data out
put to external peripherals until the GVT exceeds the correspond
ing data's time stamp. For diagnostic purposes, however, it
might prove valuable to show graphics displays for Time Warp
tasks as the output messages are received, and erase the display
and start over when rollbacks for the graphics task are
necessitated.

2.2.2 Chandy-Misra

As noted by [Jefferson 1983], there are a number of proposals for
distributed simulation that adopt a network view of a discrete
simulation. The simulation is decomposed into so many nodes
(objects) which are linked along well-defined paths corresponding
to the inter-node interactions.

As with Time Warp, these approaches view time as asynchronous.
Each object has its own local simulation time, and messages are
time-stamped as to their desired arrival time.

However, a strict order is imposed on the message arrival. Each
path of the network is assumed to contain sequential messages
with non-decreasing arrival times. Although any number of input
path may exist, once a simulated time is reached on one path,
there is no turning back to the earlier time. A node can examine
the first message queued on each path, and then take the oldest
of the messages and advance time to that point, since there is
now no way for an older message to be received. The most conser
vative approach won't allow a node to continue unless there is at
least one message in each input queue.

27

Object-Oriented Distributed Simulation

This works well in a simple hierarchical or sequential
topologies, as shown in Figure 2-4. A series of a messages can
travel in one direction along the network, and because there is
no cycle in the network graph, there is no possibility of dead
lock in the system. However, if the B nodes are faster at gener
ating messages than the C node is at processing them, the ap
proach is subject to potential memory overflow as messages pile
up on C's input message queue.

Hierarchical

Sequential

Figure 2-4: Simple Networks for Distributed Simulations

28

Parallel Architectures for Distributed Simulation

These simplified topologies cannot be said to representative of
the broader class of simulation problems. All but the most ex
treme of problems contain at least one cycle in the system, as in
the modified topology of Figure 2-5. A conservative approach is
guaranteed to deadlock, since no node can continue without at
least one message on each input queue.

Figure 2-5: Simple Network with a Cycle

As noted by [Jefferson 1983],

... the likelihood seems remote that a large, complex
simulation will succeed, at every node and around every
cycle, in walking the narrow path between these two
dangers of deadlock and memory overflow long enough to
terminate normally.

K. M. Chandy and J. Misra of
proposed several additions to
papers, including [Chandy 1981].
have a finite length under the
only does an empty que~e stop a
stops a node's output.

the University of Texas have
the network concept in various

Message queues along each path
Chandy-Misra proposal, and not

node on input, but a full queue

This modification allows a finite limit on the number of messages
in the system and thus on the total memory requirements.
However, the limit on computation output exacerbates the problem
of deadlocks, since even less computation is being done than
before.

29

Object-Oriented Distributed Simulation

To alleviate this problem, a deadlock-detection mechanism is used
to automatically find and break deadlocks. When a deadlock is
discovered, each node sends a null message with its current
simulation time. The null messages can be used to calculate a
concept comparable to Jefferson's global virtual time, and then
at least one task can be restarted without worrying about the
possibility of an earlier message coming in.

A number of other approaches to distributed simulation networks
simulation exist, including [Ziegler 1985].

2.2.3 Dataflow Languages

A number of researchers have concentrated their parallel
processing research efforts on examining the sequential relation
ships of data used in complex calculations. The class of solu
tions that have resulted are collectively referred to as
dataflow. Although not directly related to discrete event
simulation, there are a number of parallels to the previous
approaches, as well as potential solutions to the general
problems subsumed by distributed simulations.

The dataflow approach structures a problem as a hierarchy of
directed graphs establishing the causal data relationship. The
graphs are typically coded for small grain dataflow, which as
sumes instruction-by-instruction parallelism. Such low-level
parallel processing is comparable to the instruction pipelining
of large mainframe computers, but is much more sophisticated and
extensive in scope.

Such algorithmic parallelism can be expressed in so-called
"single assignment" languages, such as SISAL [McGraw 1983]. In
such languages, each variable can be assigned only once, but used
multiple times. Th~ following SISAL program integrates the area
under the curve y=x in the interval [0,1]:

30

Parallel Architectures for Distributed Simulation

function integrate (returns real)

for initial
int ·- 0.0; . -
y := 0.0;
X . - 0.02; . -

while
X < 1.0

repeat
int . - 0.01 * (old y . -
y := old X * old x·

'
X . - old X + 0.02; . -

returns
value of sum int

end for

end function

+ y);

The loop can be unwound and executed in parallel, similar to the
Occam par construct. However, the old construct is used to es
tablish the sequential relationship between successive iterations
of the loop, thus restricting an iteration from using an old
value before it is set by the previous iteration. The single
assignment constraint means that any graph node waiting on a data
value can begin execution once the value is set, since it cannot
later be reset. At the conclusion of the loop, the sum of the
parallel calculations is available and is returned.

The best known small grain dataflow machine is the Manchester
Dataflow Processor, described in [Gurd 1985], from which the
preceding example was taken. The system uses a tagged token
memory architecture to represent the data values of the graph.
In a benchmark of 1-12 function units, system efficiencies range
from 100% to 91%, yielding an 11-fold throughput improvement for
the 12-processor case.

Research into large grain dataflow is less frequent. With paral
lelism (and dataflow graphs) specified at the routine level, the
graph of a large grain dataflow program is equivalent to the net
work simulation paradigm of Chandy and others. A 1 arge grain
dataflow system exchanges the greater processor utilization of
the small grain approach for a decrease in communication
overhead.

31

Object-Oriented Distributed Simulation

2.2.4 Occam

Although it lacks direct support for simulation, the recent
design of the language "occam" [Inmos 1984] offers a number of
important ideas on how a language can provide user support for
parallel processing. It adopts a quasi-dataflow approach to
small-grain parallelism, waiving the single-assignment restric
tion of SISAL while requiring explicit declaration of task
interactions.

Occam uses data channels for communication between parallel
tasks, which function roughly as single-variable pipes[May 1984].
The two channel input and outputs operators are a fundamental
building block of an occam task:

chan value
chan ? value

outputs value to channel chan
inputs value from channel chan

A series of tasks may be executed using one of the following
three replicating constructs:

SEQ sequential execution of tasks
ALT the first task ready is executed
PAR all tasks are executed in parallel

For example, a simple vector addition could be performed as

PAR i = [0 FOR n]
a[i] := b[i] + c[i]

Indentation, incidentally, is not a matter of programmer
preference, but a required syntactic specification of block
structure.

A more complex example from [Wilson 1984] is the evaluation of a
common signal processing problem, the butterfly fast Fourier
transform expressed by the equation of complex variables:

X = A+B
Y = W(A-B)

If each butterfly of the FFT is allocated to a single transputer,
this is expressed in occam as

32

WHILE TRUE
SEQ

PAR

Parallel Architectures for Distributed Simulation

A ? Areal;Aimag
B ? Breal;Bimag

PAR
X
y

Areal+Breal;Aimag+Bimag
((Areal-Breal)*Wreal)

(Aimag-Breal)*Wimag);
((Aimag-Breal)*Wimag)

((Aimag-Bimag)*Wreal)

The algorithm must be modified if each transputer is to perform
multiple butterfly calculations.

2.3 Design objectives

From the common characteristics of the parallel processing sys
tems outlined earlier in this chapter, a number of objectives
were postulated for the design of an approach to distributed
simulation. The objectives, it is hoped, reflect the goals of
this study, as outlined in the previous chapter.

The following seven points represent the ideals by which the
proposed concurrent simulation language should be evaluated:

1. Support object-oriented programming based on a specification
of inherited properties.

The current technology of many-node parallel processors em
phasizes the use of message-passing for inter-processor
communication. Such a constraint maximizes the difficulty
in exploiting paralle 1 ism in a program's execution, and so
represents the technical obstacle that should be overcome
first. A solution for a message-passing architecture will
also work in an environment of shared memory, or on a system
of nearly-shared memory, such as the Butterfly.

In addition, the Time Warp concept relies implicitly on
state changes through (time-stamped) object-object messages.
It is the only mechanism provided for communication and
synchronization between tasks running on different CPU's.

33

Object-Oriented Distributed Simulation

While the object-message paradigm alone is a powerful one,
the greatest productivity benefits are promised in conjunc
tion with behavior and attribute inheritance. For example,
Apple Computer has plans to develop a library of inherited
default behaviors as a way of building programs for its
Macintosh personal computer. 6 Such an approach holds great
promise for simulation. The strength of the existing
SIMSCRIPT system is based on a wealth of standard behaviors
generated for certain classes of objects, although there is
limited flexibility in enhancing those behaviors.

2. Support stuctured programming, where not inconsistent with
(1).

In the past 15 years, modern programming language develop
ment has focused on the problem of developing and maintain
ing complex software systems using teams of programmers.
Such work has led to what is conventionally termed
"stuctured programming." Such languages offer a number of
advantages for large programming projects that should be ex
tend to the area of object-oriented programming, where
possible.

The unit concept of UCSD Pascal [Clark 1982] was perhaps the
earliest approach to the problem of separate compilation and
development. A group of procedures is clustered in a unit;
outside the unit, only specifically-defined interfaces are
available. This separates the external specifications of a
unit from its internal implementation. This concept was
further developed in Modula-2 modules and the package con~

cept of Ada.

However, some of the ideas of structured programming are
antithetic to true object-oriented programming. Strong
compile-time checking -- even in conjunction with Ada's
identifier overloading -- does not allow for the flexibility
of a run-time determination of an object's state variables
or behavior. In addition, many of the principles of struc
tured programming only further encourage the use of global
or quasi-global data for communication between procedures.
This makes even more intractable the task of partioning data
and computations for parallel processing, as will be dis
cussed in later chapters.

34

Parallel Architectures for Distributed Simulation

(3) Allow efficient implementation on numeric processors.

While "Lisp machines" and other associative processors hold
great promise for the future, in the near term, mass
production microprocessors will emphasize conventional
numeric architectures. For example, each of the parallel
processing systems cited earlier in this chapter is based on
standard register-machine architecture.

In the meantime, the use of Lisp or similar languages on
conventional processors commands a performance price too
high to meet the AMIP objectives described in Chapter 1. In
one study using the Lisp-based ROSS [Nugent 1983], the
simulation was estimated to be 10 times slower than required
for a production model. Even using the Lisp Flavor System
and the most efficient numeric processor implementation
available, reference [Elias 1985] estimated that a Lisp
based simulation was four times as slow as one written in a
procedural language.

However, many object-oriented productivity gains are ob
tainable on conventional processors by using a fully
compiled language. Both C++ [Stroustrup 1984a] and Object
Pascal [Tesler 1985a] suggest that the fundamental objec
tives of (1) and (2) can be met without compromising
performance. In fact, the former report claims slightly
better performance for C++ over less compact formulations in
C, in some cases.

The experience of [Cosell 1984] is perhaps a more realistic
predictor, where a multiple-path inheritance system brought
a measurable, but acceptable performance degradation. Cer
tainly computational resources are not so inexpensive as yet
to be able to accept even a twofold slowdown without serious
qualms.

(4) Directly support discrete simulation.

As noted by [Law 1982], a simulation language offers anum
ber of significant advantages over a general-purpose
language such as FORTRAN or Ada:

A. Simulation languages automatically provide
the tools needed for writing simulations, in
creasing programmer productivity.

B. They provide a natural framework for describ
ing and implementing models.

C. Models become shorter and easier to maintain.

35

Object-Oriented Distributed Simulation

D. More compact programs are less likely to have
errors.

E. Automatic compile-time and run-time error
checking is provided for common simulation
problems.

The disadvantages noted by Law are that specialized tools
require additional training, and a user may not always find
those tools on a particular host computer. For major
simulation efforts, this additional cost is generally far
smaller than the savings provided by these advantages over
the lifetime of the model.

To ignore the two decades of development and modeling using
the appropriate tools would be a giant step backwards, in
the author's opinion. The failure to provide appropriate
simulation tools -- no matter how good the language might be
-- would increase the risk of user rejection and failure.

(5) Inclusion of second-generation simulation constructs.

As noted in (4), first-generation simulation languages
provide improved user productivity over the direct use of
general purpose languages (typically FORTRAN) for discrete
event simulation.

Later languages have taken these tools a step further, by
providing a more natural framework for the description of
the steps in a discrete simulation. An example of this is
the use of processes to group a series of related action by
a single actor in the simulation.

For example, the following pseudo-code illustrates such an
association:

process TRUCK

end

request a GAS PUMP
wait 5 minutes ''pumping
relinquish GAS PUMP
obtain ROUTE ASSIGNMENT
request DRIVER
work 2 hours
relinquish DRIVER

36

Parallel Architectures for Distributed Simulation

Alternatives to the process view require formulation of many
simpler events, often along an artificial division that does
not correspond to a fundamental conceptual flow of the
problem. In contrast, processes cluster groups of related
actions into a common procedure, a primary goal when build
ing a behavior-oriented simulation.

As implemented in SIMSCRIPT II.5 [Russell 1983], processes
have formed the basis of a number of major military models,
such as CASTFOREM, JTLS and SCSS. The process approach is
also an integral part of Simula, as described by [Birtwistle
1984b].

The specification of sequential actions for a given object
is also reflected in the activity-block structure of GPSS,
although GPSS lacks the flexibility of a general-purpose
high-order language that is necessary for implementing com
plex simulations.

A third-generation simulation language should also improve
upon previous implementations of other concepts, such as the
handling of resources in SIMSCRIPT II.5 and Smalltalk-80.

(6) Appropriate for single and N-processor configurations.

A concurrent simulation language should give the user a con
ceputal framework that provides clues to parallelism that
help divide up the computation and data. At the same time,
the design should not penalize use of a single-processor
system.

Of course, any program that runs on "many" processors could
run on one, with a simulated multi-processor network, if
necessary. But much of the overhead associated with inter
processor communication and synchronization would be un~
necessary and could be accomplished through more direct
means. For example, sending a message could be mapped into
a direct call of the appropriate method routine.

An important requirement is that moving between a single and
multi-processor configuration be virtually transparent to
the user. This also applies when the parallelism of the
simulation increases (more objects) or decreases (fewer
objects).

37

Object-Oriented Distributed Simulation

Failure to provide for such portability will bring on im
practically complex problems of configuration control. Most
large models will move between a variety of hardware con
figurations within their lifetimes or even within the
development period; for example, with short runs on a VAX
and longer runs on a Hypercube. Spanning both extremes also
guarantees support for MIMD machines with characteristics
somewhere in between, such as the quasi-shared memory ar
chitecture of the Butterfly.

(7) Interface to the Time Warp operating system.

Despite its use of a "brute force" approach to resolving
synchronization problems, the Time Warp operating system
currently appears to be the only approach near enough to
fruition for use in dis tri bu ted simulation. In addition,
the highly structured formalism of the alternatives to Time
Warp imply greater redesign efforts (in addition to
recoding) to move existing simulation models to distributed
systems.

In accepting Time Warp, one must also accept a number of ad
ditional requirements for a simulation model and language.
These are usually in the form of additional information
required by the operating system, or restrictions on user
programs. An example of the former is time-stamping
messages; an example of the latter is the prohibition on
direct global memory accesses. These might or might not be
relevant to another approach to distributed simulation but
could, at worst, be ignored by the compiler and operating
system when running on another system.

Among the programming languages surveyed as a part of this
study, none meet all seven criteria: most pass only two or
three. The description proposed in Chapter 4 is an example
of a language that meets all seven of these objectives.

38

CHAPTER 3: BASICS OF OBJECT-ORIENTED PROGRAMMING

This section explains the fundamental concepts of object-oriented
programming, as well as a number of implementation alternatives.
A comparative analysis of existing object-oriented languages is
beyond the scope of this chapter, but is covered in Appendix B.

3.1 The Object-oriented Programming Concept

Object-oriented Programming is a paradigm for computational pro
cesses; that is, a model of how computation is performed by a
machine as seen by the programmer. There are a number of such
paradigms, each leading to a different view of what a computer is
and how it behaves.

A "register machine" model is typified by a classical assembly
language program. "Functional programming" is the essence and was
the original motivation for Lisp. The "Logic programming"
paradigm is commonly associated with the language Prolog, but im
plicit in most database query applications, such as dBaseii.
Reference [Abelson 85] is a basic textbook on the structure and
interpretation of computer programs, and includes a comparative
study of various paradigms within the framework of a single peda
gogic language.

There are two uses for these paradigms. First, they can serve as
the basis for the construction and use of computing machines at
the software level. Second, they can be used as inspiration for
programming styles in any language or machine. Thus, we find the
object-oriented concept both in languages, such as Smalltalk-80,
and applications written "in the object-oriented style" in other
languages such as MIT's Lipsim Air Traffic Control simulation.

These paradigms are rarely found in their pure form. For
instance, Lisp is a functional programming language with some
reluctant concessions to the assignment model. This is why we
refer to closed and open implementations of object-oriented
programming. In the former, the programming environment strictly
enforces the paradigm to the point that no other programming
method is available. In the latter, its use is possible,
facilitated, or even strongly encouraged, but alternate forms are
available, even if discouraged. Thus, we would say that Lisp is
an open implementation of functional programming, while
Smalltalk-80 takes a closed object-oriented approach.

39

Object-Oriented Distributed Simulation

3.2 Objects Have Local State And Functionality

Object-oriented programming views programs as being built around
conceptual entities that can be likened to real-world things.
Each of these entities, called objects, has a set of operations
that can be performed on it. The first design step in creating
an object-oriented program is to determine the objects that are
going to exist. For example, in an Air Traffic Control (ATC)
simulation, the objects may include aircraft (which carry
altimeters, airspeed indicators, heading indicators and other
instruments) radars, communication links, displays and display
images, etc.

This first design step forces the programmer to think of the real
objects that are going to be modeled and to establish a one-to
one correspondence between these and the computer artifacts which
the program will manipulate. This makes the program logic much
more transparent and easy to follow since it closely resembles
the way people organize their knowledge of a system.

Like their real-world counterparts, objects can be grouped into
classes (or types), so that each member of a class exhibits
similar behavior. Indeed the aircraft, altimeters, etc. men
tioned above did not describe specific objects, but classes of
similar objects. An object-oriented program therefore defines a
number of object types, a set of operations allowable for each
object and can create a number of instances of each type. For
example, an object class AIRCRAFT may be defined, then three in
stances (three actual objects) of type AIRCRAFT may be created
and manipulated by the program. One might have the name "TWA
611," a second named "PAN AM 7" and a third "United 436."

In order to distinguish two instances of the same object type,
each object must maintain its own internal state information. A
number of terms are used to describe an object's internal state:
state variables, attributes, slots, instance variables, are but a
few. We will use the term attribute to conform with the estab
lished SIMSCRIPT terminology. An object's attributes can be ex
amined and altered using the operations that are defined for this
object class.

40

Basics of Object-Oriented Programming

The class AIRCRAFT may have attributes which include its current
position (LATITUDE, LONGITUDE, ALTITUDE), its current speed
vector, (NORTH.SPEED, EAST.SPEED, VERTICAL.SPEED) all the onboard
instruments, etc.

Some of the operations that can be performed on aircraft might
involve simply accessing the appropriate attribute, such as
GET.AIRCRAFT.LATITUDE, GET.AIRCRAFT.LONGITUDE,
GET.AIRCRAFT.ALTITUDE, etc. In addition, we can define operations
like SET.AIRCRAFT.LATITUDE, to alter those attributes. Finally,
we can define operations such as GET .AIRCRAFT. SPEED,
GET.AIRCRAFT.DIRECTION which, rather than simply returning the
value of an attribute, perform the necessary operations required
to return.

Even in this very basic form, object-oriented programming style
helps and encourages the design of simple, modular programs.
Since the state of any object can only be manipulated directly by
a well defined set of operations, these become the natural inter
face of the object with the rest of the world. The object be
comes a black box which behaves in a well-defined way, while the
remainder of the program is not required to have any knowledge of
the internal logic and structure of the object. This is consis
tent with the principles of structured programming that began
with Algol-60 and are now typified by Pascal, Ada and Modula-2.

We note here that SIMSCRIPT II.5 already includes many of the no
tions of object-oriented programming according to the description
so far. In particular, when a SIMSCRIPT program defines a tem
porary entity it is creating a new object class:

temporary entities
every AIRCRAFT has LATITUDE, LONGITUDE, ALTITUDE,

NORTH.SPEED, EAST.SPEED, and VERTICAL SPEED

In addition, SIMSCRIPT II.5 automatically defines a number of
operations on AIRCRAFT. For example, CREATE an AIRCRAFT called
ACl, would make an instance of an aircraft; LATITUDE(ACl) returns
the value of the aircrafts latitude, etc. Finally, the user is
allowed to define his own operations on AIRCRAFT. This fact is
recognized in section 4, where we propose to use the existing
temporary entity concept as the starting point for all enhance
ments toward, a fully object-oriented extension of SIMSCRIPT
II.5.

41

Object-Oriented Distributed Simulation

Another characteristic of objects is individuality. Consider two
instances of AIRCRAFT, ACl and AC2. These two aircraft may have
exactly the same state variables. However, they are not the same
aircraft; an object's individuality is distinct from its state
description. If ACl refers to the same instance (memory block)
as AC2, then we say that ACl is equal to AC2. If ACl and AC2 are
not equal, but the values of all their attributes are identical,
we state that ACl is equivalent to AC2. Note that in conven
tional numerics programming, the identity question does not
arise, so that there is no dichotor:ty between the terms equal
(i.e., being the same object) and equivalent (i.e., having the
same value).

To pursue this a bit further let us consider another object type
named BOX defined as:

temporary entities
every BOX has LENGTH, WIDTH, HEIGHT,

THICKNESS, WEIGHT, and CONTENTS

Let us also assume that for some implementation, the attributes
of an object are represented by one dimensional arrays so that if
BOXl is an instance of BOX, LENGTH(BOXl) would reference the
first element etc. It is obvious that BOXes would look exactly
like AIRCRAFT at runtime; there would be no way to answer the
question "Is this array a representation of an object or is it an
ordinary array?"

We refer to these variables as statically typed variables. This
means that implicitly or explicitly we have to tell the program a
priori what type of object this variable represents (points to).
Static typing (or strong typing) is a contract between the
programmer and the compiler (or interpreter) which states that
each variable can point to one and only one type of object.

The opposite practice is called dynamic typing. A dynamically
typed symbol is a pointer to an object whose type can be deter
mined at runtime. The information on what type of object it is
may reside in the object or in the variable itself. In the first
case, the object's state contains information on the type of ob
ject it represents. In the second case, the "address" of the
value object includes the type information, which is equival;nt
to extending the machine's address space n-fold for n objects.

In both static typing and dynamic typing, the object's type is
checked at compile time or run time, respectively.

The third alternative is untyped language, in which the type is

42

Basics of Object-Oriented Programming

never checked. Obviously, this provides the maximum flexibility
and the greatest risk of an undetected logical error.

The consequences of strong typing are far-reaching. In our ex
ample above any operations defined on BOXes will work with no
run-time errors when given an aircraft as an argument and vice
versa. In such a system, the burden of insuring that each opera
tion is performed on the appropriate object is placed squarely on
the shoulders of the user. On the other hand, dynamic typing im
poses a runtime overhead since all operations on objects will be
required to do type checking on their arguments.

3.3 Generic Operations on Objects

Let us consider a simulation of a radar tracking aircraft
targets. The program needs to know where each aircraft is and
will therefore use AIRCRAFT.LATITUDE, AIRCRAFT.LONGITUDE and
other operations available for aircraft objects. However, if the
radar is next required to track missiles, it would have to use
the equivalent operations for missiles, since AIRCRAFT.LATITUDE,
AIRCRAFT.LONGITUDE, etc. would not work on missiles. This means
that we will need two similar segments of code, one referencing
missiles and another referencing aircrafts.

A single-code segment could be made to track both aircraft and
missile targets if we have a generic operation, such as
GET.LATITUDE, which when invoked for an object returns the
object's latitude. In this context, GET.LATITUDE is not a par
ticular function but rather the name of an operation. The
Smalltalk phrase "sending a message" is commonly used to denote a
request for the performance of a generic operation on an object.

In order to perform this operation we need to know the object's
type and the name of the operation to be performed: for each
defined object type, the system keeps associations between the
name of the operation and the actual function to be invoked,
called a method. Thus, all AIRCRAFT objects share a GET.LATITUDE
method, a GET.LONGITUDE method, etc., and these are distinct from
the GET.LATITUDE and GET.LONGITUDE methods for objects of type
MISSILE.

In summary, we have the following universal protocol for perform
ing a generic operation on some object: we send the object a mes
sage consisting of the name of an operation (e.g. GET.LATITUDE)
and possibly some arguments. The actual method executed may
return a value, or may perform a side-effecting operations, but
in any case the effects of the message can depend on the type of
object which receives it.

43

Object-Oriented Distributed Simulation

The following should be noted about message-passing:

1. If we perform an action on an object, this implies that
objects were passive elements of the program the caller
determines how to operate on the object. With generic
operations and message passing, the object itself
determines which function is invoked and therefore the
exact effects of the message. From the user's
standpoint, the object is active; it receives messages
and it responds either by returning a value, by some
side effect, or both.

2. The concept of generic operations is not new. The need
for generic arithmetic functions was identified and
implemented since the early days of FORTRAN. What is
new is the mechanism by which the user defines and uses
generic operations. This simple mechanism has become
one of the most powerful concepts of Object-Oriented
programming.

3. Even though knowledge of the object's type is required
for correct fielding of messages, dynamic typing is not
a necessary prerequisite for generic operations.
Indeed, arithmetic functions in compiled languages like
FORTRAN, PL/1 and SIMSCRIPT (all of which use strong
typing) are generic operations.

3.4 Inheritance Of Attributes And Behavior

Let us consider an object of type TANK. Like an AIRCRAFT, a TANK
has attributes LATITUDE, LONGITUDE, ALTITUDE, NORTH.SPEED,
EAST.SPEED and VERTICAL.SPEED. Tanks should accept messages like
SPEED and DIRECTION just as aircraft do. This could be achieved
by including in the definition of TANK all the attributes and
methods of AIRCRAFT that pertain to horizon tal movement.
However, this is both inefficient and undesirable since we would
have to maintain two copies of essentially the same code.

Alternatively, a statement could be made that TANKs and AIRCRAFT
are similar with respect to the operations SPEED and DIRECTION.
One way of stating this is to declare that both TANK and
AIRCRAFT are subclasses of a more general class of object which
embodies the behavior common to both TANKs and AIRCRAFT.

We will first build a simple and more general object which we can
call MOVING.OBJECT. Then, we state that AIRCRAFT behaves like a
MOVING.OBJECT -- but can also do other things, such as fly -- and

44

Basics of Object-Oriented Programming

that TANK also behaves like a MOVING.OBJECT.
complished by a syntax such as:

This could be ac-

every LOCATION has a LATITUDE, a LONGITUDE,
and an ALTITUDE

every MOVING.OBJECT is a LOCATION and
has a NORTH.SPEED, EAST.SPEED, VERTICAL SPEED,

a NORTH.ACCELERATION, EAST.ACCELERATION,
and a VERTICAL.ACCELERATION

every AIRCRAFT is a MOVING.OBJECT and
has a BANK.ANGLE and a LONGITUDINAL.ACCELERATION

every TANK is a MOVING.OBJECT and has a GUN and a CREW

An object class LOCATION is defined with three attributes. In
the next definition, class MOVING.OBJECT is given six attributes,
but at the same it is stated that is a LOCATION. We would like
this to mean that the class MOVING.OBJECT inherits the attributes
of class LOCATION so that it has nine attributes.

Furthermore, we would like MOVING.OBJECTS to inherit all of the
behaviors of LOCATION. If, for example, objects of type LOCATION
return the object's latitude in "dd:mm:ss" format when they
receive a LAT.DMS message, we would like objects of type
MOVING.OBJECT to act the same way.

The final two definitions specify that AIRCRAFT and TANKS behave
like MOVING.OBJECTS except that they have some additional at
tributes (and possibly will be capable of receiving additional
messages). We have thus built a hierarchy of objects, starting
from a simple and generic one (LOCATION) and ending with more
complex and more specific ones (AIRCRAFT and TANK).

There are different opinions regarding which object should be
considered to be "above" which one. We use here the nomenclature
of Smalltalk-80, which calls the more primitive object (e.g.
LOCATION), the superobject and the more complex one, (e.g.
AIRCRAFT) the subobject thus, MOVING.OBJECT is a superclass of
AIRPLANE, and a subclass of LOCATION.

An important alternative in the implementation of object-oriented
systems is whether to limit the hierarchy of glasses to simple
trees, or to allow arbitrary directed graphs. In the second
case, a class may have more than one superclass, and rules may be
necessary to resolve possible inheritance conflicts (e.g. two su
perclasses have identically named attributes). On the other
hand, multiple inheritance has been found to be of practical
value in coding actual object-oriented simulations.

45

Object-Oriented Distributed Simulation

In creating a new class of objects, there are situations when the
behavior of some existing object is almost, but not quite, what
is needed as a basic building block; it would be desirable to in
herit all but a few of the superclass attributes or operations.
This can be accomplished by defining attributes or methods in the
subclass with the same name as the superclass attribute or method
we want to block. This concept is called overriding (in the case
of simple tree class hierarchy) or shadowing (in the case of mul
tiple inheritance).

Going back to our aircraft example, we notice that moving objects
have methods to return their north and east accelerations. At
the same time, aircraft have bank angle and longitudinal ac
celeration as attributes. This means that the aircraft's at
tributes are overspecified, since north and east acceleration can
be determined by the bank angle and longitudinal acceleration.

The problem can be resolved by defining an operation on aircraft
called GET.NORTH.ACCELERATON which, instead of interrogating the
NORTH.ACCELERATION attribute, computes the appropriate value from
the aircraft's bank angle, longitudinal acceleration and current
direction of motion. Whenever an aircraft receives the message
GET.NORTH.ACCELERATION it is this method, and not the one defined
for MOVING.OBJECT, which will be invoked. The new method
"shadows" the one provided by MOVING.OBJECT so that the latter is
not even visible from the user's point of view.

This example raises an important implementation issue: how are
attributes accessed from inside a class's method? Three alterna
tives are available:

1. Direct access, that is, not involving any
"secondary" message sending.

2. Exclusively by means of a message, possibly created
automatically by the system (to avoid the recursive
definition problem).9

3. Allow the user both types of access.

At first glance, direct access is the more efficient alternative,
since message passing will always be more expensive than simple
memory reference. On the other hand, many of the advantages of
shadowing, (as illustrated in the previous example with the
AIRCRAFT NORTH.ACCELERATION), are lost since the user must be
very careful about "real" vs. "virtual" (i.e., method
implemented) object attributes.

46

Basics of Object-Oriented Programming

Smalltalk-80 chooses the second alternative (preventing the user,
by the way, from overriding the sys tern-defined methods) , while
ROSS and the Lisp Flavor System choose the third alternative.

On the balance, one would conclude:

1. The user must be allowed
access methods (therefore,
3); on the other hand,

to override the attribute
we must choose alternative

2. Direct access should be used as sparingly as possible,
for example only in the attribute-access methods.

A related issue is whether to allow direct access to object at
tributes from outside the object's methods (e.g., from an unre
lated class method). This is exactly the current SIMSCRIPT II.5
temporary entity attribute access mechanism: anybody knowing the
identity of an object can directly access that entity's
attributes. This conflicts with the basic rule of Object
oriented programming:

Advertised operations on any object class are the estab
lished interface between the object and the outside world.
As such, they are subject to shadowing or other
modification. It is, therefore, an error to bypass the
message-passing mechanism when accessing an objects at
tributes unless strictly necessary.

It should be noted also that direct access of attributes outside
a method are inconsistent with the object-message architecture of
the Hypercube and similar systems, and the concept of virtual
time under the Time Warp operating system.

Methods for an operation that are totally replaced by another
method when shadowed or overriden are called the primary method
for that operation. Methods however, can be attached to a method
inherited from a superclass for a given operation without replac
ing it. This is useful to enhance the existing method by adding
some extra processing, change the default values of arguments to
the methods, etc. This type of "modification" or "customization"
of methods is referred to as method combination.

47

Object-Oriented Distributed Simulation

There are many different alternatives of method combination; the
most prevalent types are daemons and around methods. Daemon
methods are independent of the primary method and invoked either
before or after it. Around methods are invoked and are given
full responsibility as to when (if at all) to proceed with the
remaining methods for the operation. If the around method does
indeed call the remaining methods, it gains control again after
their execution and may inspect and modify their results.

A full treatment of method combination alternatives is beyond the
scope of this report, and may be found in reference [Stallman
84].

3.5. Message Forwarding and Instance-Based Inheritance

The concept of inheritance discussed in the previous section,
namely class-based inheritance, is the form of behavior in
heritance most commonly found in modern object-oriented languages

Another type which does not usually receive much atte~tion is
termed instance-based inheritance or message forwarding 1 . Con
tinuing with our aircraft example, we see that typically aircraft
have onboard instrumentation. Those instruments are themselves
objects that may have been defined as follows:

every INSTRUMENT is a LOCATION and
has an OWNER

every ALTIMETER is an INSTRUMENT and
has an ALTIMETER.ERROR

and so on for other instruments like airspeed indicators, verti
cal speed indicators, etc. These instruments belong to the class
LOCATION but they also have an attribute called OWNER which we
will assume points to the object to which they are attached.
When a reading of indica ted altitude is required from the
altimeter, it must look at its true altitude, apply some white
noise to it (say a normally distributed random variable with mean
zero and standard deviation the value of ALTIMETER.ERROR) and
return the result.

But, even though ALTIMETER, through its location SUPERCLASS, has
its own ATTRIBUTE, it is not this value that we wish to use to
compute indicated altitude, but rather that of its OWNER.
Therefore, the GET.ALTITUDE method for ALTIMETER should return
the altitude of its OWNER, whenever it has an OWNER capable of
reporting its altitude, and its own altitude if it has no OWNER,
or the OWNER object cannot report an altitude. In essence al
timeters should forward the GET.ALTITUDE message to their OWNER,
hence the term message forwarding.

48

Basics of Object-Oriented Programming

It would be possible to achieve this by including ALTIMETER as a
superclass of AIRCRAFT. Then AIRCRAFT would have inherited all
the altimeter's behaviors and would also have shadowed the
GET .ALTITUDE operation, as required. Even if the ALTIMETER's
method that computes the indicated altitude were to access the
ALTITUDE attribute directly, (in violation of the minimum number
of direct accesses principle), it would still work, since the
AIRCRAFT's ALTITUDE attribute would have shadowed the ALTIMETER's
identically-named slot.

Although correct from a strictly software point of view, (i.e.,
altimeters will indeed give the correct reading), such an im
plementation should be avoided at all costs. The main objection
is that there is no real-world class relationship between al
timeters and aircraft.

Secondly, altimeters are not only useful to aircraft, but may be
useful to mountain climbers, for example. We would be forced to
include AlTIMETER as a subclass for any object class that may
require an altimeter reading. This is indeed what happens in
SIMULA and similar languages, where the class hierarchy tree for
a typical simulation object can be very deep. Forwarding the
message to an object, which is the value of one of the forwarding
object's attributes, is a powerful mechanism that is currently in
Lisp-based simulations.

This forwarding operation can, of course, be manually coded in
the appropriately-named method of the forwarding object.
However, it would be simpler for the user if the forwarding
operation were automatically handled by the compiler;
additionally, the functional association between the two in
stances of objects is made more clear and visible. This could be
achieved by a construct such as:

every ALTIMETER is an INSTRUMENT,
has an ALTIMETER ERROR,

and forwards GET.ALTITUDE to OWNER

It is interesting to note, by forwarding the GET.ALTITUDE message
to the OWNER object, we have effectively overriden the
GET.ALTITUDE methods of ALTIMETER's superclasses. However, since
the value of the OWNER attribute is determined at run time, we
have the important result that different methods may actually
field the GET.ALTITUDE message for different instances of
ALTIMETER, depending on who owns a particular inheritance alone.

49

Object-Oriented Distributed Simulation

A complete behavior inheritance scheme can be constructed by
means of the message-forwarding feature, if a "standard" at
tribute is made to be present in every object which indicates the
"parenthood" relation- ship. The ROSS language uses this
mechanism as the behavior-inheritance mechanism, as opposed to
the class-based mechanism of SIMULA, Small talk, and the Lisp
Flavor System. Both approaches are workable and could be viewed
as two different implementations of the same concept.

However, there are a number of important differences between
them:

1. In the class-based inheritance concept, classes of objects
(e.g., AIRCRAFT, ALTIMETER, etc.) are qualitatively dif
ferent from instances of objects of that class. Even
though they may be objects themselves (i.e., class
AIRCRAFT may be implemented as an instance of class
CLASS.DESCRIPTION), they do not support messages that the
objects they describe support (e.g., the instance of
CLASS.DESCRIPTION describing the AIRCRAFT class does not
support the ALTITUDE method or any other method supported
by aircraft instances).

In the instance-based inheritance concept, classes are
only quantitatively different from instances of objects.
In ROSS for example, objects whose OFFSPRING attribute is
a non-empty set are classes, otherwise, they are instances
(the terminology used in ROSS is generic and specific
objects).

2. Each concept implies a different view of the world. Class
based inheritance views the class behavior as being an
integral, inalienable part of each object. Once an object
has been instantiated, we can alter its behavior only by
altering the contents of its attributes, but we could not
change its class structure and makeup.

In contrast, instance-based inheritance views classes as
sets. Objects inherit the class behavior by belonging to
the set. At any point, we may add an object to a class or
remove it from another class; an aircraft can turn into a
tank by a simple modification of one of its attributes.

50

Basics of Object-Oriented Programming

3.6 Desirability of Object-oriented Programming

There are three reasons why Object-Oriented Programming should be
considered as a technique for implementing system simulation:

1. The abstraction barriers provided by Object-Oriented
programming enhance the desirable modularity in program
ming that makes large systems manageable.

2. The software architecture that results from programming in
Object-Oriented style often match the experiential percep
tion of the system being simulated; this simplifies the
mapping between elements of the real system being simu
lated and the corresponding software element simulating
them, and between the flow of causality in the simulated
system and the flow of control in the simulation.

3. The Active-Object/Message-Passing paradigm of computation
seems to lead to a practical and effective way of im
plementing concurrent, synchronized multiprocessing, and
indeed has been proposed as an approach to concurrent
simulations [Jefferson 85].

On the other hand, it must be made very clear that there is noth
ing in an object-oriented program that could not be coded in a
conventional way, much in the same way that there is no SIMSCRIPT
program that could not be implemented in FORTRAN, BASIC, or, for
that matter, machine code. Of course, any ditch dug with a steam
shovel could also be dug with a teaspoon, though perhaps not in
one lifetime.

The use of an object orientation holds obvious promise for the
construction of large simulation models. For example, the combat
models SCSS, SLAATS and CASTFOREM have already been built using
traditional SIMSCRIPT II. 5 to implement an object-message
approach. This approach becomes even more obvious when dealing
with communications simulations, such as NETWORK II.5 [Garrison
1984].

However, the net advantage of an object-oriented framework in
either a single or multi-processor environment will become ob
vious only when the proper tool is placed in the hands of ex
perienced simulation modelers. A 50-line demonstration model in
any language is not an accurate predictor of its utility in writ
ing a 50,000-line program.

51

Object-Oriented Distributed Simulation

52

CHAPTER 4: A LANGUAGE FOR CONCURRENT SIMULATION

This chapter describes a proposed Language for Concurrent Simula
tion that could be used on MIMD systems. The LCS design encom
passes many of the concepts of object-oriented programming
described in the previous chapter. It also inherits many of the
properties of the SIMSCRIPT II.5 language, notably including the
direct support of SIMSCRIPT's higher-level simulation constructs,

In deciding how to mesh the concepts of object-oriented program
ming with existing simulation capabilities, we have to consider
the following issues of potential compatability issues:

1. Maintaining upward compatibility with the existing
simulation concepts and training.

2. Maintaining maximum commonality between the stand
ard implementation on a single CPU and the parallel
processing environment of an MIMD system, such as
the Caltech HyperCube.

3. Keeping the distinguishing features and concepts of
the language (processes, events, etc).

4. Maintaining the current syntactical flavor of the
language.

The basic building block of LCS is called an object, which is
similar to a SIMSCRIPT temporary entity with message receiving
properties added. In their current implementation, temporary en
tities exhibit many of the fundamental traits of objects. In
particular, they have an internal state description, (attributes)
and operations can be defined on them.

At the same time, the concept of an object can be used as an in
frastructure for defining many of the existing SIMSCRIPT
artifacts. This would allow gradual re-implementation of the
great majority of SIMSCRIPT internal constructs (like sets, I/O
streams, etc), in the object-oriented style. Throughout the
remainder of this chapter, the terms "object" and "entity" will
be taken refer to LCS objects.

53

Object-Oriented Distributed Simulation

4.1 Background of SIMSCRIPT II.5

The original SIMSCRIPT programming language was developed at the
Rand Copora tion for the U.S. Air Force in 1962. It was one of
the earliest general-purpose simulation languages, along with
GPSS and CSL. In some ways, SIMSCRIPT I [Markowitz 1963] was
also among the earliest languages to incorporate object-oriented
concepts. For example, a SIMSCRIPT event is an active object
with a limited number of behaviors.

The later SIMSCRIPT II [Kiviat 1968] progressed even further
towards a true object-oriented language by providing a message
like approach for querying and changing object attributes through
use of monitored variables. Each such attribute has both data
and program associated with it, and two "methods" are au tomati
cally defined -- one for accessing the value, and one for chang
ing the value. As with other object-oriented languages, no syn
tatic distinction is made between accessing an attribute or the
value returned by a method routine.

This monitoring capability is also used for defining additional
behaviors for statistics gathering. Such statistics include a
user-specified list of properties and qualifiers.

Although the original SIMSCRIPT was a translator to FORTRAN, the
current SIMSCRIPT II.5 is now a full compiler implemented on most
mainframes and minicomputers. A significant enhancement is the
process feature [Russell 1983], somewhat based on GPSS activity
blocks, which allows specification of sequential actions for a
simulation object. This enhancement was originally developed a
decade ago to support a major combat model, SCSS, that is still
in use today.

SIMSCRIPT II.5 is specified by AMIP software development stand
ards [AMMO 1983] as the standard Army simulation language. The
language has been used for a large number of major military
models [CACI 1985]. It is also used in modeling manufacturing,
transportation, and communications problems. It has gained
recent importance in the implementation of general-purpose com
puter systems simulators, such as NETWORK II.5 and ECSS.

54

A Language for Concurrent Simulation

SIMSCRIPT is unusual in that it is one of the few general
interest languages that is defined and distributed by a single
company. This allows CACI to efficiently enhance, support and
teach the language, without hindrance of outside committees or
organizations. Several hundred simulation professionals each
year attend CACI' s course, "Simulation and Model Building
Simplified with SIMSCRIPT II. 5." The company also maintains an
active university program to encourage the teaching of SIMSCRIPT
II.5 at both the graduate and undergraduate level.

Late in 1984, CACI was hired by JPL to study the requirements for
developing a parallel-processing simulation language. This
report is a summary of the results of that study.

4.2 Objects in LCS

An entity in LCS entities has attributes and retains all the
capabilities of temporary entities in SIMSCRIPT II.5. The syntax
for defining them and instantiating them will also remain similar
by allowing new types of clauses, but keeping all the existing
ones as they are now. A high degree of compatibility with cur
rent code is thus maintained. The proposed syntax is:

every ENTITY.NAME
[has ATTRIBUTE, [ATTRIBUTE2, ...]]
[is OBJECT, [OBJECT2, ...]]
[refers to OBJECTA, [OBJECTB, ...]]

Some examples of this are:

every LOCATION has a LAT, a LON, and an ALTITUDE, and
define LAT, LON, ALTITUDE as real variables

every INSTRUMENT is a LOCATION and
has an OWNER

define OWNER as an object variable

The use of the refers to clause will be discussed in Section 4.7.

Another subtlety in the interpretation of the DEFINE statement
for entity attributes can be identified. Since LAT, LON, ALT,
etc., are now local to the objects and can be accessed only
through appropriate messages, we are implicitly specifying that a
LAT message to an object of type LOCATION is a REAL function
(i.e., it returns a floating point value). These definitions
should be local to the entity we are currently defining. In the
best case the user should be able to say:

55

Object-Oriented Distributed Simulation

every SHIP has a MAST, and a FUEL
define FUEL as a real variable
define MAST as an integer variable

every CAR has a MAKE and a FUEL
define FUEL as an integer variable
define MAKE as a text variable

That is not to say it is reasonable for the user to want to do
this. It should be possible, however, for an attribute name to
have distinct typing for each temporary entity class. Notice
that there is a vast difference between the above and

every VEHICLE has a FUEL
define FUEL as a real variable

every SHIP is a VEHICLE
and has a MAST

define MAST as an integer variable
every CAR is a VEHICLE

and has a MAKE
define MAKE as a text variable

The inevitable consequence is that when later in the code the
message FUEL is sent to an object X, it is impossible for the
compiler to tell whether the message will return an integer or a
real value. It may be desirable to require static tying of X in
such cases, or for the compiler to encourage the user to define a
more consistent generic usage of the attribute FUEL.

Variable typing will also create problems with respect to at
tribute merging. In particular, when two classes have the same.
attribute name and each has declared it to be a different type,
it is not clear what should happen when a third class is built on
both of the first two. One approach would be to use the most
general of the two declarations. This would mean that if one was
declared integer and the other real, the composite class would
implicitly define this attribute as real. From a practical
standpoint, however, it would be more appropriate for the LCS en
vironment to signal a compile-time error if this occurs.

4.2.1 Declaration of Objects

As noted in the previous section, the structure of a global LCS
object is declared in the PREAMBLE, much as for a SIMSCRIPT tem
porary entity or a Pascal record. These attributes are part of
each instance of the object and are accessible in any module of
the program, class. Thus, the attributes must be declared exter
nal to all such modules.

56

A Language for Concurrent Simulation

However, there may be some state properties for the object which
should not be globally defined and accessible, but instead avail
able only in procedures associated with the particular object
class. We will distinguish the two types of data values by
referring to the former as public attributes, and the latter as
private attributes.

As noted earlier, public attributes are declared in the section
of the program that defines the specifications of the object. If
the object is global in scope, the specifications are in the
program preamble. However, the declaration of private attributes
is associated with the IMPLEMENTATION of the object, and thus is
declared in conjunction with the appropriate routines for im
plementing the object's behaviors.

Not suprisingly, the implementation of an object is defined with
the object statement, which in some ways is similar to the event
or process statement of SIMSCRIPT II.5. The section may be fol
lowed by one or more variable definition statements. Such vari
ables will be declared as private attributes, and space will be
reserved in each instance of the object to hold these attributes.
However, only methods associated with the particular object class
will be able to access these attributes. The section is ter
mianted -- as is any routine or module -- by the end statement.

The implementation section may also include one or more ex
ecutable statements, which will be executed after the instantia
tion of the object. This section will commonly be used to define
to default values for instances of the object.

For example, consider a sample specification of an AIRPLANE
object:

every AIRPLANE
has X, Y, Z, SPEED, HEADING and FLIGHT.STATUS

This defines six public attributes for all objects of class
AIRPLANE.

Next, consider, the sample implementation section

object AIRPLANE

end

define CABIN.PRESSURE as real variable
define FOOD.SERVICE.STATUS as text variable

FLIGHT.STATUS = "Grounded"
FOOD.SERVICE.STATUS = "Not served"

57

Object-Oriented Distributed Simulation

This declares two private attributes for the object, as well as
default values for both public and private attributes.

After the necessary initialization code, the section may include
the corresponding method routines for the object's behaviors.
This allows grouping of the implementation of simple objects into
one source file.

For more complex objects, methods may also be specified outside
the object declaration using, in this case, the for <object.type>
modifier. (See Section 4.3)

The object block may also include a declaration of other objects,
as discussed in Section 4.8.

4.2.2 Referencing Object Attributes

In SIMSCRIPT and its successors, the attributes of an entity are
referenced by listing the attribute name, followed by the entity
pointer in parentheses, as in:

WEIGHT(PLANE)

This provides a comfortable analogy to ordinary arrays, which in
fact is used to implement a slightly different type of entity (a
permanent entity) which has identical syntax but is implemented
as an array. This similarity also facilitates the monitoring of
attributes, since the syntax is indistinguishable from calling
procedure WEIGHT with argument PLANE.

Unfortunately, this syntatic overlap has two obvious
disadvantages. First, there's no way for an object to directly
have an array as one of its attributes - a rare but not unimpor
tant requirement. Secondly, the monitored variable can receive
the entity pointer as an argument, but no other arguments are
possible.

If LCS were to be used by a significant number of SIMSCRIPT II.5
programmers and programs, it might be desirable to "grandfather"
this existing syntax. However, a more flexible approach is
needed to allow arguments (subscripts) for object routines
(arrays) .

LCS adopts the colon (11 :")

pointer from it~ attribute.
become

PLANE:WEIGHT

as a separator between the object
Thus, the preceding example would

58

A Language for Concurrent Simulation

for the attribute WEIGHT of an instance of AIRPLANE called
PLANE.ll

An array attribute of the object could then be expressed as

PLANE:RPM(ENGINE.NO)

and so forth. 12

The colon delimiter of LCS has the same role as the dot delimiter
of Simula, as in

PLANE.WEIGHT

This syntax, however, cannot be used in Pascal or C because in
those languages it implies that PLANE is a static, rather than
dynamic, data structure. Instead, Pascal (Object Pascal) would
express the PLANE:WEIGHT of LCS by first de-refencing the
pointer, as in

PLANE"'. WEIGHT

InC (or C++), the arrow delimiter is used, as in

AIRPLANE->WEIGHT

Even in those languages that provide for both approaches, the
vast majority of object references will be to dynamic data
structures. Therefore, omitting a syntax for static object
references proves only a minor reduction in flexibility for typi
cal simulation programming. However, it provides a sizable
benefit in conceptual clarity and ease of use.

As noted in both C++ and Object Pascal, the specification of the
object is redundant within the corresponding method routine (see
Section 4.3). Therefore, in a routine specifically for object
AIRPLANE, the following references would be unambiguous and
equivalent to previous examples:

WEIGHT
RPM(ENGINE .NO)

This is similar to the SIMSCRIPT II.5 construct of implied
subscripting, but avoids all of the problems associated with its
unrestricted use. It also allows public attributes, private
attributes, and method variables (section 4.3) to be used inter
changeably within a method -- a heal thy freedom, given that the
distinctions may change as the system is implemented.

59

Object-Oriented Distributed Simulation

4.2.3 Collections of Objects

It is very rare that a program will concern itself with only a
single instance of an object. Instead, most object classes will
be represented by multiple instances, which the user wishes to
keep track of and manipulate, either as a group, or as one of
several subgroups.

Smalltalk refers to such a group or subgroup as a collection of
objects. The requirements for a collection may vary widely from
application to application, or even within the same program. In
some cases, the order of the objects is important; the order
within the collection may be defined by the order of entry, or by
some attribute of the object. Many collections -- such as a dic
tionary of code phrases -- are accessed primarily by looking up
an object with an attribute matching a known key. Other collec
tions have no order or structure whatsoever.

The primary strength of the SIMSCRIPT I language was in its view
of the world terms of objects, properties and collections, or, in
SIMSCRIPT terms, "entities, attributes and sets." A SIMSCRIPT
set is a particular type of ordered collection. It may be imple
mented as either a singly- or doubly-linked list, with a first
in, first-out or last-in, last-out ordering. The user is also
allowed to specify a series of ranking criteria for ordering of
entities with the set (See [Mullarney 1983]).

An important requirement of a modern object-oriented language is
the provision for a number of different types of collections,
both of standard system forms and those defined by the user.
When used in a parallel-processing environment, such collections
should also address the issues of concurrent searching and non
deterministic ordering. This will be discussed in Chapter 5.

4.2.4 Object Variables

The most fundamental change brought about by introducing object
oriented concepts is the need for dynamically-typed variables. In
essence, we need a variable type that can hold an arbitrary ob
ject and a way to determine at run time what type of object is
pointed to by the variable.

60

A Language for Concurrent Simulation

As was noted in Chapter 3, dynamic typing is not a pre-requisite
of object-oriented programming. On the other hand, it is soon
apparent that strong typing can be very restrictive. Unless
dynamically typed variables exist, one would generally find it
impossible to perform iterative calculations on a set of objects
unless they were all of the same class.

For example, in a strongly-typed language, code such as

for each X in SET.OF.OBJECTS
do

ask X LATITUDE yielding LAT

loop

could not compile correctly unless we tell the compiler that
SET.OF.OBJECTS can only contain objects of a certain type (say
AIRPLANE). Then X could implicitly become a variable of type
AIRPLANE at least for the duration of the loop. In that case,
the latitude message for AIRPLANE could be hardwired into the
code at compile time. This would sacrifice much of the
flexibility that characterizes object-oriented programming.

For purposes of commonality, the statically typed variables that
are now in existence can co-exist with dynamically typed ones.
The syntax for dynamically typed variables will be

define X as an object variable

which is analogous to

define Y as an integer variable

This syntax provides a possibility which is open to a number of
interpretations:

define X as a LOCATION variable

This statement can mean either:

1. X can point to any object that is of type
has LOCATION as one of its superclasses.
form of dynamic typing, except that
restrictive. We will call it deep typing.

61

LOCATION or
This is a

it is more

Object-Oriented Distributed Simulation

2. X can only point to an object of class LOCATION but not
to one that has LOCATION as a superclass. This is a
form of static typing for object variables. We'll call
this shallow typing.

Whichever of the above interpretations we chose to implement, the
statement can be as for two possible actions from the compiler.

1. It constitutes a promise to the compiler, thus giving
it permission to optimize the code under the assumption
that X will indeed always point to a legal object type,
or

2. It is a request for run-time error signaling if any
legal object type is assigned to X.

Unfortunately, we might want to select a different interpretation
depending on where in the code the statement appears. For
instance, if it appears in the preamble, it is likely that deep
typing combined with the error-checking request might be the most
appropriate interpretation. As an example, for the code:

every CAR has a DRIVER
define DRIVER as a PERSON variable

It is almost certainly best to create runtime checks so that the
driver of a car is never assigned an object which does not have
PERSON somewhere in its class structure.

4.2.5 Instantiation of Objects

An instance of an object is allocated in LCS by the create
statement. Thus, the statement

create AIRPLANE

would allocate a new instance of class AIRPLANE and assign a
pointer to that instance to the variable of the same name. The
called qualifier can be used to assign the object pointer to a
different variable, as in

create AIRPLANE called TWA747

The creation of temporary entities should also remain upwards
compatible with SIMSCRIPT II.5. Three optional clauses will also
be available.

62

A Language for Concurrent Simulation

CREATE A class .name CALLED name
with attribute.! value.l

[,{attribute.2 value.2 ... }]

The WITH clause simply specifies that the following pairs are al
ternating attribute names and initial values for the new entity.

The subject of object deallocation is one of some controversy
within the field of modern programming languages. One school of
thought holds that the user should not be responsible for deal
locating the memory associated with an instance. Instead, the
system should "know" when the instance is no longer being used
and return the memeory at that time. This approach is taken by
Smalltalk-80 and implementation of Lisp.

This design point eliminates many common programming errors. For
example, an object could be deallocated while it is still a mem
ber of a linked list, thus corrupting the entire collection. Or
the object may be "known" to many objects, any one of which could
deallocate the object without informing the other objects.

On the other hand, from a practical standpoint automatic deal
location poses a number of serious implementation problems. As
outlined in [Goldberg 1983], there are two traditional approaches
to automatic deallocation. The first approach uses a count of
the number of references to an object. When the count returns to
zero, the object is deallocated. This fails to properly handle
certain cyclic data structures, and also significantly slows the
assignment of object pointers, since each such assignment means
decrementing one counter and incrementing another.

The alternate approach is to perform a periodic garbage
collection, by marking those objects which are still known by
some path from the root object. The remainder are assumed to be
"lost" and thus can be deallocated. This garbage collection can
be very slow, particularly in a virtual memory environment. This
also results in a large amount of wasted memory, which may be un
acceptable on a smaller non-virtual machine.

The author beleives that manual deallocation offers a viable
alternative, when the proper protections are provided. Such
protection would include:

* Detection of accesses to deallocated objects
* Refusing to deallocate an object in a collection
* Infrequent re-use of memory to maximize access detection

63

Object-Oriented Distributed Simulation

Such an approach has been used for the past five years in one im
plementation of SIMSCRIPT II.5 ([West 1984]), by providing an ex
plicit checkout mode that also detects other common data
referencing problems. In actual use at hundreds of sites, for
models ranging from 200 to 200,000 lines, this approach has been
proven to be of pratical use without the performance disadvan
tages of automatic deallocation.

An object instance can be deallocated with the destroy statement,
as in

destroy AIRPLANE

Each class of objects also has user- and system-defined destroy
methods (see Section 4.3) to take care of cleanly terminating the
object's existence. The user might wish to manually remove the
object from any collections it is in, or print a trace of the ac
tion to a debugging file. The system-defined method would take
care of deallocating any compounded data structures -- such as
string or array attributes -- then would call the appropriate
system memory manager routine.

4.3 Method Routines

A method routine specifies the action to be taken for a par
ticular message of a given object class. The sending of a mes
sage to an object (Section 4.4) will eventually cause the program
to execute one (or more) method routines corresponding to the
message specifier and object type.

4.3.1 Declaration of Methods

The specification of a method for a class of temporary entities
can be syntactically similar to the current function and routine
definition.

method MESSAGE.NAME [for CLASS.NAME]
[given ARGUMENT1 [, ARGUMENT2 ...]]
[yielding VALUE1 [, VALUE2 ...]]

' ' Method code

end

64

A Language for Concurrent Simulation

For example,

method DISTANCE for LOCATION given OTHER.ENTITY
define OTHER.ENTITY as a LOCATION variable

end

define DX, DY, OTHER.LON, OTHER.LAT as real variables

ask OTHER.ENTITY LON OTHER.LON
ask OTHER ENTITY LAT OTHER.LAT
DX = (LON - OTHER.LON) * 60.0

* COS.F (0.5 * (LAT + OTHER.LAT))
DY = (LAT - OTHER.LAT) * 60.0
return with SQRT.F(DX**2 + DY**2)

Note the addition of the for ENTITYTYPE keyword, indicating the
object type. As noted in Section 4. 2, if the method routine is
within an object block, these keywords are optional. Given and
yielding keywords can of course be specified for methods just as
they can be specified for functional routines.

Here is a good place to point out that DISTANCE is not a global
symbol as is the case with the current SIMSCRIPT II.5
functionality that can be given to temporary entities. The sym
bol can overloaded and reused (say for LOCATION objects) and no
conflict occurs. Each object has its appropriate method for DIS
TANCE and a combination of static and dynamic checking will as
sure that it is used. Good programming technique would suggest
that the same name be re-used only for similar functions and
parameters, but this is by no means a language requirement.

As is evident in the example, within an entity's method, its at
tributes can be accessed DIRECTLY just like variable references.
This is similar to the way that a SIMSCRIPT II. 5 process can
access its attributes within its process routine.

As a convention, the variable SELF.V will be defined within any
method and will always point to the instance of the entity on be
half of which the method has been invoked. This allows methods to
send messages to the same object. For example, in the DISTANCE
method illustrated above, we could have used

ask SELF.V CURRENT.COURSE yielding ROUTE.LIST

to obtain information derived from the object's state.

65

Object-Oriented Distributed Simulation

4.3.2 Arguments to Methods

Unlike Fortran, Pascal, C and other languages, all arguments to
LCS routines are passed by value. This means that the actual of
the variable is communicated in the argument frame.

Arguments may include any one of the standard scalar types:

* integer
* floating point
* character
* string
* enumerated type

where the last type also encompasses a variety of derived types,
such as messages and Boolean values.

For support of object-oriented programming, acceptable argument
types must also include:

* An object pointer

However, the acceptable arguments to a method routine do not
include:

* An object instance
* The address of a scalar quantity

as are allowed and, in fact, encouraged by modern structured lan
guages and their object-oriented derivatives, such as Simula, Ob
ject Pascal and C++.

The "address of" construct is frequently used as a crutch for al
lowing a routine to return a number of values. However, it has
extremely undesirable consequences when associated with a no
shared-memory MIMD parallel processing system, and is even worse
when operation is under the Time Warp operating system is con
sidered (see Chapter 5).

Instead, LCS allows any number of arguments to be returned by
value. This construct is, in the author's experience, unique to
the family of languages derived from SIMSCRIPT I. As with the
arguments given to a method routine, the value of the arguments
returned to the caller through the yielding construct are in
cluded in the argument frame and unstacked by the calling object.

66

A Language for Concurrent Simulation

4.3.3 Local Variables In Object Methods

As with any routine, a method may define its own variables.
These variables are declared within the method routine with the
define statement.

LCS is a member of the modern block-structured family of
languages, and thus is fully recursive, so local variables are
normally recursive in nature. Subsequent entries to the method
will find the variables initialized to null values. The vari
ables associated with a particular invocation of a method are not
accessible outside that invocation, and are not retained after
the completion of the invocation.

However, different methods operating on the same instance of an
object may communicate themselves through either the public or
private attributes of that instance. The private attributes are,
in fact, intended to allow the implementation of an object's
methods to internally share information without affecting the ex
ternally known specifications of the object.

Applications may be required where a method may need to share in
formation between differing instances of the same class of
object. For example, a queuing method could increment a local
counter to provide a unique identifier for each instance of an
object in the queue. The counter could be declared using the
static keyword as used in C, which is similar to the saved
keyword of SIMSCRIPT II.5. Such a variable, as in:

define COUNTER as integer static

would retain its value between subsequent entries to the method
routine.

Both the arguments and local variables of a method routine must
be distinct from the attributes and messages defined for the cor
responding object (or its superclasses). This requirement, sug
gested by [Tesler 1985b] for Object Pascal, avoids a common am
biguity and avoids the awkward work-around required by the im
plementation of SIMSCRIPT II.5 events and processes.

Local variables are truly temporary, existing on the stack and
popped upon exit from the method; they may be saved, however,
while the method is in progress, as with a method that requires
an interval of simulated time (Section 4.6.1). This treatment
emphasizes that methods should be autonomous pieces of code
without any memory of previous invocations and avoids programming
errors due to inadvertent side-affecting among methods.

67

Object-Oriented Distributed Simulation

4.4 Message Passing

Three mechanisms exist for accessing the functionality of an LCS
object. They are:

* Implicit (colon-delimited)
* The ask statement
* The tell statement

The implicit references are appropriate for messages that accept
or return a single function value for use as part of an
expression. The latter two statements can be used with arbitrary
calling sequences, and are essentially similar, except as noted
in Section 4.4.1.

The syntax of the ASK statement is:

ask OBJECT.VARIABLE [to] message
[given {ARGUMENT.! ... }]
[yielding {VALUE.l, ... }]

For example, if BOS and PVD are of class LOCATION and DIST is a
real number,

ask BOS DISTANCE given PVD yielding DIST

would be the way to compute the distance between Boston and
Providence (assuming the flat earth model implicit in the defini
tion of DISTANCE above).

Because the LCS language is intended for simulation, messages of
ten will be queued for execution at a future time. For example,
when simulating a communications network, the arrival of a piece
of information will occur at a finite interval in the future. To
facilitate the transfer of such messages, the ask (and tell)
statements may include an optional time of execution, as in

ASK object [TO] message.name AT sim.time

Language purists might object to this dilution of the generality
of the object-message paradigm. But the alternative for this
case would be to invent a fictitious event just to send this
message, or to include the start time as an argument to a
process-type object, which would wait the remaining time.

68

A Language for Concurrent Simulation

The flexibility this adds strongly suggests that this should be
included. More importantly, many existing distributed approaches
require a language-level time stamp to coordinate asynchronous
time. "Hiding" the event time in the message arguments would
only frustrate such coordination efforts and increase the chance
of deadlock or rollbacks.

4.4.1 Message Synchronization

In a single-processor environment, most object-oriented systems
implement message-passing analogously to a function call. Send
ing a message to an object (e.g. TELL TANK ENGAGE) means that the
program or support system will find the appropriate method
routine for that message/object combination and transfer control
to that routine. When the method is complete, control will be
returned to the routine that originally sent the message, perhaps
with one or more return variables (ASK PLANE POSITION YIELDING
X, Y).

When the same program is running in a distributed environment,
this assumption of sequential action is unduly restrictive.
Sending a message to another processor requires a certain amount
of time, and a faithful reproduction of the single-CPU case
would require that the requesting object wait until the method
completes and the acknowledgement message is received. Perhaps
the CPU can be put to other uses while awaiting the return
message.

Under the Time Warp operating system, this restriction becomes
much worse. The sending object may be at a different virtual
time than the receiving object. If the sending object is further
ahead in time, it must wait until the receiving object catches
up, and THEN wait for the method to complete execution.

This suggests that there may be a requirement for two types of
messages in a LCS. A synchronous message is one that behaves
identically in a single- or multi-CPU system; the sender does not
continue execution until the receiver's corresponding method is
complete. If we think of messages as a form of electronic mail,
then this is analogous to sending a "registered letter." The
completion of the method automatically forwards a "return
receipt" to the sender, which is merely a special form of message
acknowledging the original message.

Some messages will always be synchronous. For example, any mes
sage asking for YIELDING values must be synchronous, because fu
ture computations are likely to use those value. Si~~larly, any
message that returns a function value is synchronous.

69

Object-Oriented Distributed Simulation

In other cases, however, the sending routine doesn't care what
the recipient does with the message. If the gamesmaster of the
multi-player simulation is sending out a new set of engagement
rules, there may be no reason to wait for the message to be
processed. In fact, if the message is going to 400 units, it
would be impractical to send one message, wait for it to be
processed, and so proceed sequentially for all 400 units.

In a virtual-time environment, the situation is further compli
cated by the prospect of waiting for laggard units to catch up to
the gamesmaster's virtual time. The mere act of updating engage
ment rules could freeze the gamesmaster's object for several
(elapsed) hours.

Instead, an asynchronous message is needed -- thus allowing the
sending object to continue without further waiting. In a single
CPU system the distinction between synchronous and asynchronous
messages will be unimportant. With a distributed simulation, ex
tensive use generally of asynchronous messages will allow maximum
possible utilization of the multiple CPU's.

Distributed computation and communications systems -- whether
electronic mail or the Time Warp operating system -- tend to em
phasize asynchronous message-passing for obvious reasons of
efficiency. The raises the question: Is automatic message
synchronization really necessary? After all, it can always
implemented by waiting for an asynchronous response message.

However, certain concepts, particularly in a resource-oriented
simulation, are more naturally implemented through a series of
synchronous messages. For example,

ask LOGISTICS AIRLIFT yielding TRANSPORT
tell TRANSPORT GOTO(PICKUP.POINT)

The second message cannot be executed until the first has been
executed. Even if both actions take place at the same simulated
time, the sequential order within that simulated time must be
maintained.

Because the most significant side-effects of (non)synchronization
will occur in the sending object, it seems natural to make the
distinction when sending the message. In LCS, the keyword ASK is
used to send synchronous message, and TELL is used for an
asynchronous one. Attempting to TELL for a YIELDING variable
will result in a compile-time error.

70

A Language for Concurrent Simulation

4.4.2 Message Side-effects

The implementors of the Time Warp operating system have proposed
a contrasting dichotomy of message types, relating to message
side-effects [Beckman 1984]. In a single-CPU system the distinc
tion is meaningless, as is the case with message synchronization.
For that matter, if a message is received by an object to be ex
ecuted in some future time, the two types are equivalent.

However, the distinction has been postulated for efficient im
plementation of the Time Warp rollback mechanism. In particular,
the set of possible messages has been divided so that receipt of
certain messages will not necessarily cause a time fault and
rollback.

A query message is defined as one that does not change the state
of the object. As its name suggests, the most common application
will be for messages that inquire as to the state of the receiv
ing object. A query message received from an object's past will
be satisfied by looking up a saved state of the object. By
definition, a query message cannot cause a rollback.

The most interesting (if not most frequent) class of messages
will be those that do change the object's state, which are Time
Warp refers to as event messages. Any message that MIGHT change
the object's state -- such as the GOTO message -- must be
declared as an event message, so that the receipt of an event
message for some previous time will cause a Time Warp rollback.
As currently implemented, this occurs even when the state is un
changed by the method. For example, a method that checks for.
something to do might find nothing, and thus leave the state un
changed -- but it would still cause a rollback.

However, a query method that changes the state of the object im
plies a logic error, or at least requires an immediate rollback.
A query method also cannot send itself on an event message and
would jeopardize time causality if allowed to send other objects
event messages.

Unlike message synchronization, the distinction as to message
side-effects clearly belongs with the recipient method, not the
sending object. In most cases, the distinction can be discerned
by the compiler and/or programming environment: if the method
modifies attributes directly, or sends itself event messages,
then it is an event method. Otherwise, it can be classified as
the less-dangerous query method. Associating the distinction
with the method definition (instead of the message dispatching)
is also consistent with the object-oriented principle of hiding
the implementation of the message behavior from those who use it.

71

Object-Oriented Distributed Simulation

The distinction between query and event messages can be seen as a
difference between "read only" and "write only" state operations.
However, this restriction of the Time Warp operating system seems
too stringent to impose as a general language requirement. In
addition, methods that may at first appear to be queries -- such
as is found in SIMSCRIPT' s monitored variables -- may actually
end up having intended side-effects, such as the tabulation of
message statistics.

Therefore, it seems undesirable to force the LCS user to manually
declare each method as one type or the other. Manual interven
tion may be desirable, however, in unwinding cyclic message
dependencies, perhaps through use of an interactive linker.
Alternatively, the environment can assume that any method that
sends a message is an event method.

4.5 Class-based Inheritance Of Object Behaviors

The implementation of behavior inheritance in LCS should be
class-based, since it is clearly a more flexible and powerful al
ternative to instance-based inheritance. In addition however,
the user should be given the facility to establish instance
associations, as is noted later in this chapter.

A class-based behavior inheritance is declared with the is clause
in the definition of an entity. As an example an AIRPLANE object
may be defined as follows:

every LOCATION has a LAT, LON, ALTITUDE
every MOVING.OBJECT is a LOCATION and

has NORTH.SPEED, EAST.SPEED and VERTICAL.SPEED
every FLYING.OBJECT is a MOVING.OBJECT and

has a BANK.ANGLE and a LONGITUDINAL.ACCELERATION
every AIRPLANE is a FLYING.OBJECT and

has MASS, POWER.LEVEL, LIFT.TO.DRAG.COEFF

When an AIRPLANE is created it will have all the attributes of
LOCATION, MOVING.OBJECT, and FLYING.OBJECT as well a.s those of
AIRPLANE. The following code would therefore be legal 14

create an AIRPLANE called TW611
with ALTITUDE 10000.0,
LON - 71.0
LAT - 42.0

72

A Language for Concurrent Simulation

If a class includes two or more superclasses that have the same
attribute, the two attributers are merged into the one (i.e.,
there is only one physical location where that attribute is
stored for each instantiation of the top level class). Note that
an object can include a superclass and also it can have at
tributes that are of that superclass type. It is important to
differentiate between the two. For example,

every AIRPLANE is a LOCATION and a FLYING.OBJECT
and has an ORIGIN and a DESTINATION
define ORIGIN,DESTINATION as LOCATION variables

For whatever reasons, the user included both FLYING.OBJECT and
LOCATION as superclasses of AIRPLANE. Still, an instance of
AIRPLANE will only have a single slot for each of the attributes
LAT, LON, and ALTITUDE, as if the LOCATION class was not
specified in the definition. However, the LOCATION methods will
take precedence over any corresponding FLYING.OBJECT methods, be
cause of the order of declaration.

On the other hand, the AIRPLANE's attributes ORIGIN and DESTINA
TION will continually be distinct objects and each will keep its
own individual slot for each of its LOCATION attributes.

When determining the default behaviors for an object, the be
haviors are prioritized in the order of declaration. In this
example, any method not implemented for AIRPLANE will first be
inherited from LOCATION and then FLYING.OBJECT. This hierarchy
includes all the inherited behaviors of the superclass -- so that
behaviors inherited by LOCATION will outrank any defined by
FLYING.OBJECT.

This provides conceptual simplicity, but does not handle certain
complex relationships. For example, consider

every FLOWN.OBJECT is a PILOT and an AIRPLANE

This would allow commands to the FLOWN. OBJECT to generally be
routed to the corresponding PILOT class. However, for the state
ment

ask FLOWN.OBJECT YOUR.WEIGHT yielding LANDING.WEIGHT

The appropriate response would be to write a short method which
explicitly references the corresponding method for the AIRPLANE
superclass. This could be done by lexically typing the object
pointer when asking the method, as in:

73

Object-Oriented Distributed Simulation

method YOUR.WEIGHT for FLOWN.OBJECT yielding MASS
ask (AIRPLANE)SELF.V YOUR.WEIGHT yielding MASS

end

The type-casting syntax shown is similar to that for the C
language.

4.6 Simulation Object Classes

Since event notices and processes are temporary entities they
will automatically turn into message receiving objects in LCS.
In fact, one can implement event notices and processes as:

every EVENT.E has a TIME.A,E UNIT.A and belongs to
an EV .S

every PROCESS.E has IPC.A,STA.A,RSA.A, owns
a RS.S and is an EVENT.E

Finally, processes and events can maintain their process and
event routine respectively. This should be totally distinct from
their methods since its invocation procedure will be completely
different. Namely, these routines will automatically be invoked
by the system timer as is done in SIMSCRIPT II. 5, and process
routines they should maintain their recursive save area as is
currently the case.

4.6.1 Time-elapsing Methods

For objects that are subclasses of PROCESS.E (hereafter referred
to as a "process"), a number of behaviors are automatically
defined for the implementation of the process construct.

A method of process does not have to complete within a particular
simulated time. Instead, one or more statements may cause simu
lated time to advance until a particular condition or conditions
are met. Such a method is referred to as a time-elapsing method.

One obvious case of such time elapsing occurs with the wait
statement,

wait 10 hours

Other time-elapsing statements may involve a request that con
tains an implicit wait, such as

request 1 unit TELLER

74

A Language for Concurrent Simulation

For conceptual and implementation reasons, time-elapsing state
ment may be used only within a method for a process. They may
not be included within a method for an ordinary object, or in a
non-object routine or function.

Although not specified in the definition of the SIMSCRIPT II.5
language [Russell 1983], recent implementations have allowed in
clusion of such statements in ordinary routines. Disallowing
this might appear to be a serious restriction. However, most of
the usages of such statement could be more cleanly handled by a
common class-based behavior inheritance. One common example
would be the following method (in which the trailing dots are
used to indicate the implied pointer MOVING.OBJECT:):

method GOTO(LOCATION) for MOVING.OBJECT
DX = LOCATION:X- X ..

end

DY = LOCATION:Y- Y •.
NSTEPS = SQRT.F(DX**2 + DY**2)/MAX.SPEED •.

/TIME STEP
OLDX = X .•
OLDY = Y ..
for J = 1 to NSTEPS
do

FRAC = J/NSTEPS
X. • = OLDX = FRAC*DX
Y. . = OLDY = FRAC*DY
wait TIME.STEP

loop

An attempt to use a time-elapsing method on a non-process will
have the same result as any other message/object mismatch: a
compile, link, or run-time error will be produced, depending on
where it is detected.

75

Object-Oriented Distributed Simulation

4.6.2 Object Synchronization

In Section 4. 5.1, a distinction was made between messages that
are executed synchronously on a parallel processing system. The
same distinction is significant when considering methods involv
ing changes in simulated time.

Consider the GOTO method described in the previous section. In
some cases, the object may wish to initiate a GOTO without wait
ing for it to complete. This would surely be the case of a dis
patcher for a fleet of planes, as follows:

~or each ROUTE in SCHEDULE,
do

tell ROUTE:AIRPLANE GOTO(ROUTE:DESTINATION)
loop

For a typical hub-and-spoke operation (e.g., Federal Express), a
large number of planes need to be dispatched simultaneously, so
the dispatcher doesn't care how long it takes for the correspond
ing method to execute.

However, the same method might be used by an AIRPLANE object to
implement a more complex routing that involves a trip along a
specified list of LOCATIONs. A method FLY.ROUTE to implement
this might look as follows:

method FLY.ROUTE (ROUTING) ~or AIRPLANE
~or each ROUTE/LOCATION in ROUTING
do

ask AIRPLANE GOTO(ROUTE.LOCATION)
loop

end

Because the AIRPLANE object must wait for the GOTO to complete
before starting the next one, the ask statement is used instead
of the tell statement to assure synchronization. Note that the
method doesn't distinguish whether it was called synchronously or
asynchronously.

To summarize, when a message is sent to a time-elapsing method:

ask causes the sending object to wait until method completion
tell allows the sending object to continue immediately

It is easy to see that statements such as request and even wait
can be implemented as an ask to a system-defined method for class
PROCESS.E. This does, however, raise the unresolved issue of the
behavior of non-PROCESS objects that perform a request.

76

A Language for Concurrent Simulation

4.7 Instance-based Behavior Inheritance

The refers to clause of the every statement defines an instance
based inheritance for objects of a given class. The clause
specifies one or more classes of object for which certain be
haviors and attributes are to be deferred.

In addition to having its own declared attributes and those ob
tained from class-based inheritance declared in an is clause, an
object also inherits all those attributes of classes declared in
the refers to clause. However, these attributes are not incor
porated within the template for the newly-defined class.
Instead, the template includes a pointer to a particular instance
of the specified class.

For example, take the following declaration,

every VEHICLE
has an ORIGIN and a DEST,
refers to a VEHICLE.TYPE

every VEHICLE.TYPE
has a FUEL.CAPACITY and a MAXIMUM.SPEED

When created, a VEHICLE should specify a VEHICLE.TYPE, as in the
following

create a VEHICLE.TYPE called VT.Ml with MAXIMUM.SPEED = 60

create a VEHICLE called NEWTANK with VEHICLE.TYPE = VT.Ml

Then a method for calculating trip length could include the fol
lowing statements

method HOW.LONG for VEHICLE
return with DISTANCE(ORIGIN, DEST) / MAX.SPEED

end

To minimize the chance of errors, one restriction must be placed
on the use of attributes obtained through an instance-based
inheritance. If the subclass of object inherits the methods as
sociated with changing the values of the superobject, this in
heritance would be a recipe for disaster.

77

Object-Oriented Distributed Simulation

For example, the statement

let TANK:MAXIMUM.SPEED = 70

would change the value of MAXIMUM.SPEED for all tanks of the cor
responding VEHICLE.TYPE -- which, if the user thought about it,
is probably not what (s)he wanted. As a consequence, objects do
NOT inherit the methods associated with changing the public at
tributes of their instance-based superobjects.

Such an assignment can be explicitly made, of course, by a state
ment such as

let TANK:VEHICLE.TYPE:MAXIMUM.SPEED = 70

Of course, attempts to access any attribute or method associated
with an instance-based inheritance will produce a run-time error
if the reference object pointer has not been initialized.

4.7.1 Class Variables

As an example of how instance-based inheritance could be used,
let us consider the standard properties associated with each
class of objects. The standard properties -- both attributes and
behaviors -- for each object class could be represented by an in
stance of a standard object template, or TEMPLATE.E.

Each instance of an object would then refer to a TEMPLATE.E, and
will be created with the following psuedo-syntax.

create an AIRPLANE
with TEMPLATE.E AIRPLANE.T

where AIRPLANE. T is a system-defined and initialized variable
pointing to an instance of a TEMPLATE .E. This association is
transparently included for the user and is not a part of his/her
declaration of the create statement.

Through this mechanism, all instances of a particular object
class would then automatically standard properties. For example,
a number of standard attributes could be associated with a
TEMPLATE.E, and thus, all instances of any class. These would
include:

78

A Language for Concurrent Simulation

CLASS.A -- an integer indicating the class of an object
(equal to the predefined constant C.OBJECT)

CLASS.NAME.A -- a string with the name of the class
SIZE.OF.A -- an integer specifying the size of an object in

stance
NUMBER.OF.A -- the number of current instances of the object
SUPERCLASS.A(class) -- a boolean value (in array) indicating

whether the specified object type is a superclass
of the object

ACCEPTS.A(message) -- a boolean value (in array) indicating
whether the specified message type is defined for
the object

The TEMPLATE.E is similar to the class "Metaclass" of Smalltalk-
80. Acknowledging this debt, we can adopt the Small talk term
class variable to refer to the attributes of the template.

4.8 Instance-oriented Modular Programming

Previous structured languages have established data hiding
relationships for recursive (stack-based) data values based on a
nested block structure.

For example, Algol-60 allows for a series of procedures to be
nested within each other. Recursive variables for the "outer"
procedure are known within inner procedures, as in the following
example, which prints "1" and "2" to the PRINTER file:

BEGIN
FILE PRINTER (KIND=PRINTER);

PROCEDURE PRINT(A,B)
REAL A,B
BEGIN
REAL X;
X := A;

BEGIN
REAL Y;
y := B
WRITE (PRINTER, /, X, Y);
END INNER BLOCK;

END OUTER BLOCK;

PRINT (1.0,2.0);
END

79

Object-Oriented Distributed Simulation

In the example, the variable X is lexically scoped to include
both the inner and outer block; the variable is "known" in either
block and be read or modified in either. However, the variable Y
has a lexical scope that includes only the inner block. Both
variables are not known outside the procedure PRINT.

Also, if the procedure PRINT were called from another point in
the program, the values of X and Y would be completely distinct
from the call listed above. This is because each entry to the
procedure causes a new set of memory locations to be set aside
and initialized for the variables. We can think of this as a
form of stack-based data hiding for different activations of the
procedure. (A variable declared OWN in Algol is common across
all entries to the block, similar to the LCS concept of STATIC
variables).

Simula, of course, is a dialect of Algol, and shares its fun
damental block structure characteristics. Pascal is one of its
descendants.

As noted earlier, later derivatives
develop a more general construct.
term "module" to refer to a group of
a set of values.

of Pascal have attempted to
We will adopt the Modula-2
related routines that access ·

As with the outer Algol block, the module variables are lexically
scoped -- the identifier name is known only within the routines
of the module. However, any entry to one of these routines will
modify the module variables. There is no data hiding between
entries; the variables are lexically local to the module, but
static between entries in the module.

LCS implements as instance-based data hiding, and object-oriented
analog to the stack-based data hiding of Algol-60. It does so by
allowing a definition of a hierarchy of objects (for program and
data) comparable to the hierarchy of blocks (for program only)
defined by Algol.

4.8.1 Declaration of child objects

Previously, we have dealt only with objects that are declared in
the program preamble and are thus global in scope. These
objects, can, naturally, be referred to as global objects.

However, new object classes can also be declared within an object
routine, as follows

object AIRPLANE
every AUTOPILOT has a COURSE, SPEED

80

A Language for Concurrent Simulation

In this case, a block structure of lexical scope is established,
analogously to that in Algol-60. In LCS, the outer object (e.g.
AIRPLANE) is called the parent object, while the inner object
(AUTOPILOT) is called the child. Children, may, of course, beget
children; there is no restriction that a child object must be
declared within a global object definition. (It is clear that
global objects are, in turn, merely children of the preamble.)

The objects, attributes, and messages for a child object are
known only to its parent. Child objects may communicate with
siblings -- other instances of the same class. They may also
communicate with cousins -- instances of objects of a different
class that share a common parent. 15

Child objects also have access to the data and program of the
parent, and can interrogate and change the· parent's state. If
limited to lexical scoping, this data hiding would be comparable
to the module concept, in which the parent object represents a
module (or unit, or package).

However, while the child objects have access to both the public
and private attributes of the parent object, they so do only for
the particular INSTANCE of the parent that created them. This is
an instance-oriented data hiding for objects that is analgous to
the activation-oriented data hiding of Algol procedures.

The following example may clarify this.

every PARENT has a VALUE
object PARENT

entities include CHILD

method DISPLAY given X
VALUE = X

end
end

create CHILD
ask CHILD PRINT

object CHILD
method PRINT

list VALUE
end

end
main

create a PARENT called PARENT 1
create a PARENT called PARENT-2
tell PARENT 1 DISPLAY (1)
tell PARENT-2 DISPLAY (2)

end

81

Object-Oriented Distributed Simulation

would cause the output

VALUE = 1
VALUE = 2

to appear on the output device16

The number contained in variable VALUE for the instance PARENT 1
is completely inaccessible to the CHILD of instance PARENT_2, and
vice versa.

In fact, any parent object is also, necessarily, the superobject
of an instance-based inheritance. Although not explicitly
programmed as such by the user, the above code can be conceptual
ized as

every CHILD refers to a PARENT

create a CHILD with PARENT PARENT

method PRINT for CHILD
list CHILD:PARENT:VALUE

end

If necessary, a number of instances of differing child objects
can communicate through the attribute of their common parent ob
ject (instance). The instance of the parent objects and all the
instances of its children are then referred to as an environment,
as first proposed by [Elias 1985]. Unlike the earlier proposal,
however, any number of instances of the same class of environment
may exist in the simulation, and the creation of different en
vironments is entirely data-driven.

Externally, the environment is visible to other instances and en
vironments only through the external specifications (public at
tributes and methods) of the parent object. Environments, of
course, can be nested wi thing environments. All objects in the
simulation are, in fact, part of the global environment.

The availability of object environments offers a number of sig
nificant advantages in construction large simulation models for
exeuction on MIMD systems:

1) Lexical data hiding within an environment separates the
global specification of a parent object from its local
implementation, as is true with structured language
modules.

82

A Language for Concurrent Simulation

2) Instance-based data hiding restricts the use of side
effect programming and provides a structured framework
for object-oriented programming.

3) A protocol is provided for specifying complex time
elapsing behaviors for the parent object, as noted in
the next section.

4) An important clue is provided for distributing data
across parallel CPU's. If objects were unscoped, any
object could interact with any other object, offering
almost no hope for discerning tightly-coupled objects.
Even a module-like lexical scoping would mean that any
INSTANCE of the same class of inner object could inter
act with all the common data of the outer object.

The use of instance-based environments for distributing data will
be discussed further in Chapter 5.

4.8.2 Use of Child Objects

As noted previously, one use of the parent/child hierarchy is in
implementing a complex behavior for the parent object. This is
particularly true when the parent object is a process; conceputal
and implementation considerations strongly suggest that an object
executing a time-elapsing method accept only a restricted class
of messages.

For example, the Smalltalk class DelayedEvent defines a limited
protocol of messages that can be accepted:

* Set the condition for event sequencing
* Begin event when condition is reached
* Pause (interrupt) the event
* Resume an interrupted event
* Decide if sequenced before another DelayedEvent

Similarly, if a process is executing a time-elapsing method, it
is reasonable to allow the process to respond without limit to
query messages, as defined earlier. However, receipt of any
event method other than INTERRUPT should result in a run-time
error. Once interrupted, the method could only be CANCELLED or
RESUMED.

Failure to impose this restriction would open a Pandora's Box of
indeterminate states that cannot be shut. The restriction would
not hamper the modeling of certain classes of "dumb" processes,
such as a group of docile (non-balking) customers in a fast-food
restaurant.

83

Object-Oriented Distributed Simulation

This would not be an acceptable restriction in more complex
problems, such as modeling a trans-continental airplane flight
through a network of air traffic control centers. Even if the
plane sets its course as "due west" and then waits for six hours,
it must be able to respond to a series of arbitrary commands
during that flight -- as in a changed destination resulting from
bad weather at the destination airport, or an order from head
quarters to divert to pick up other passengers.

As suggested by the earlier example, this case could be supported
by defining an AUTOPILOT as a child object within the AIRPLANE
environment. A psuedo-code version of this would be:

object AIRPLANE

end

define AUTO.SET as a boolean variable
create an AUTOPILOT

method FLY.TO(ROUTE)
if AUTO.SET

end

interrupt AUTOPILOT
cancel AUTOPILOT

endif
tell AUTOPILOT FLY.TO(DESTINATION)

method FLY.TO(ROUTE) for AUTOPILOT
AUTO.SET = .TRUE

end

for each LEG in ROUTE,
do

loop

AIRPLANE:HEADING = LEG:COURSE
wait LEG:TIME
AIRPLANE:LOCATION = LEG:TERMINUS

AUTO.SET = .FALSE
tell AIRPLANE ARRIVAL

In this way, the AIRPLANE object is free to respond to messages
from objects external to the environment. However, the AUTOPILOT
object will continue along the specified route, changing the
plane's coruse and location as it goes. Note that the AUTOPILOT
explicitly modifies public attributes of its parent AIRPLANE,
thus allowing it to arrive at Lts destination without any ex
plicit intervention on its part. 17

84

A Language for Concurrent Simulation

If the AIRPLANE receives a conflicting set of instructions, it
can stop the AUTOPILOT from flying one course and start it flying
another. When the route is completed, a message is sent to the
AIRPLANE to allow it to perform the actions associated with
arrival, such as landing at the airport.

An alternate mechansim may be desirable for the coordination of
parent and child process interactions. Many classes of child
processes may not need more than one method and its sole function
can be implemented as part of its initialization code. Upon ter
mination of that code, the process would be destroyed, but before
destroying itself, the child should inform the parent of its
completion, as in

ask AIRPLANE CHILD.DONE(AUTOPILOT)
destroy AUTOPILOT

A similar mechanism is used by the UNIX operating system to coor
dinate between a task and its subsidiary tasks. (These are
referred to as the "parent process" and "child processes", con
sistent with LCS terminology.) As provided for in Version 7 and
the Berkeley variants of UNIX, the completion and termination of
a child process results in the C-langauge function call:

kill (parentid, SIGCLD);

where kill is the misnamed system routine to send a signal
(message) to the task parentid, and SIGCLD is the standard signal
for the "death" of a child. The parent process, in turn, is ex
pected to "catch" the signal by the following system call, which
suspends the parent until one of its children terminates:

childid = wait(&status)

In this case, childid is the process identifier of the terminated
process, and status is used to pass a 16-b it status value
returned by the child process.

The object-oriented analog would be

method CHILD.DONE given CHILD

end

85

Object-Oriented Distributed Simulation

Because the parent would receive the message before the child is
destroyed, it can access all of its public attributes to deter
mine its state. Unlike the UNIX example, however, the parent
process does not have to explicitly wait for CHILD.DONE, but is
free to continue with its business, receiving any message from
inside or outside the environment.

4.9 Durable Objects

By modern standards, early computer systems had tiny amounts of
memory. A standard IBM 360 configuration of the late 1960's had
less main memory than a typical personal computer model sold
today, such as a fully configured IBM XT or Apple Macintosh.

As a consequence, a distinction was made between the files stored
on peripheral devices and a program's memory-resident data
structures. Early systems stored files sequentially on tapes,
but these were soon supplanted by random-access disk drives.

With the advent of gigabyte-level virtual memory systems and new
techniques for taking advantage of such memory, it has been sug
gested that this dichotomy between files and data structures has
by now become obsolete. This may be particularly true for a com
plex simulation, which has a number of requirements for data
management.

Within a large simulation run, it may prove necessary to stop the
program, analyze the current data structures and possibly re
arrange their relationships. Alternate scenarios may be desired
by capturing one set of relationships and re-playing the simula
tion from that point with different parameters.

From a more static viewpoint, the same global structure may exist
across a number of simulation runs. The topology of a communica
tions network, the terrain of a region, or the force structure of
a military unit are often shared across a series of exeuctions of
the same simulation -- or even different simulation models. The
current approach is to store the relationships in human-readable
format in a sequential data file, then rebuild the data struc
tures each time the program is run.

A number of solutions have been developed to the problem of data
management. Some systems support development of a data base
through a series of standard applications programs, which then
allow access to that data base via subroutine calls in the user's
program.

86

A Language for Concurrent Simulation

However, to make the integration of files and data work, the user
should only use one protocol for manipulating either type of data
within his/her program. If' a hashed collection allows location
of' an object with language statements such as

for each SYMBOL.ENTRY,
with KEYWORD = USER

why should (s)he be forced to call a subroutine to look up a
record in a data base, then manually transfer the data to a
memory-resident data structure? The only practical distinction
between an object instance and a database record is the
dura b i 1 i t y of the data : the f' o rm e r ex i s t s un t i 1 the p r o gram
exits, while the latter remains until erased by an errant user or
a hardware failure.

To address this problem, the concept of durable objects (or
"durable entities") has been proposed by [Mullarney 1982]. The
term was coined to distinguish the new type of' object from exist
ing data concepts of "temporary" entities (frequently created and
destroyed) and "permanent" entities (usually created only once
per run).

As proposed by Mullarney, the instances of a class of durable ob
jects would be stored on a disk file and then loaded into memory
when used within a program. As with other virtual and swapped
memory algorithms, changes in the memory-resident objects would
be translated by the hardware into changes in the disk-resident
data structures, either incrementally or at the completion of the
run.

The original implementation proposal envisioned an MS-DOS file
stored on the hard disk of an IBM XT. The format of' the file
would be compatible with the segment architecture of the XT' s
8088 chip, which uses the upper 16 bits of an address to specify
a segment number and the lower 16 bits for a segment offset. In
the simplest approach, the collection of durable objects could be
thought of as one 8088 segment and object pointers in the data
represented as byte offsets within the file (segment).

As implemented, each object instance could contain a series of
arbitrary scalar quanti ties, or pointers to other instances of
the same class. A more heterogenous data structure -- with ob
jects of' one class owning collections of another -- would require
a universal proto cal for identifying the disk-resident object
classes (segments). For simpilicity's sake, the segment number
for each file of a user's programming environment could be
uniquely assigned by a segment manager.

87

Object-Oriented Distributed Simulation

A collection of durable objects could then be arranged in the
same way as non-durable objects, either using keys, or ranking,
some other form of ordering, or unordered lists. Such a collec
tion would be a database, but manipulated via customary object
oriented protocols.

Independently of this proposal, SIMSCRIPT creator Harry Markowitz
has designed and implemented the EAS-E database language
[Markowitz 1984]. The language is based on the SIMSCRIPT concept
of entities, attributes and sets ("objects, properties, and
collections). The same protocols can be used to manipulate both
memory-resident and disk-resident entities. The EAS-E compiler
is based on an early SIMSCRIPT II compiler, but is now written in
EAS-E, allowing it to manipulate EAS-E memory and disk objects.

The EAS-E system, like the Small talk-80 environment, includes a
browser that allows the user to view and modify the data
structures. Such an object editor would allow the LCS user to
access and change individual database records (object instances)
in much the same way as standard microcomputer-based database
programs do. The editor would be far simpler in implementation,
however, because it is used only for query and update purposes,
not complex reports.

4.10 Other Structured Programming Constructs

The existing SIMSCRIPT II.5 contains many of the features of a
structured programming language in addition to its unique high
level language constructs that directly support simulation.

As noted, SIMSCRIPT provides for recursive procedures and dynamic
data s true ture s, as we 11 as standard simulation cons true ts
(events, processes, resources).

The differences between the control structures of SIMSCRIPT and
other structured languages are more ones of form rather than
function, so it is proposed that LCS adopt those of the current
SIMSCRIPT II. 5 language. The simplest such structure is the if'
statement:

if' X < 20
1 1 true case

else
'

1 :false case
endi:f

88

A Language for Concurrent Simulation

The other primary (non-iterative) control structure of SIMSCRIPT
II. 5 is the case-selector block, recently added to the current
definition of the language [West 1985]. The select case state
ment allows selection of one of several alternatives, based on a
numeric or string expression:

select case STRING
case "YES"

'' one possible case
case "NO", "NEIN", "NYET"

'' duplicated case
case "0" to "99999"

'' range of cases
default

''none of the above
endselect

For looping, a series of repeated actions may be performed by one
of the following iterative groups:

while BALANCE <> 0
do
''block of iterative statements
loop

for COUNTER = LOWER to UPPER
do
''block of iterative statements
loop

for each OBJECT
do
''block of iterative statements
loop

for each OBJECT in COLLECTION
do
''block of iterative statements
loop

Any of the loops may include one of the statements:

leave ''exit the loop

cycle ''continue with the next iteration

89

Object-Oriented Distributed Simulation

From a conceptual standpoint, providing both embedded record
structures and multiple inheritance are redundant and add un
necessary conceptual complexity. In addition, such embedded
structures pose a serious practical problem in that they make it
difficult to perform stringent run-time object validation, in
cluding dynamic type checking. Such problems are not found in
the previously stated "pure" forms of object structures, includ
ing multiple-path class inheritance, instance-oriented
inheritance, or by using attributes that are object pointers.

The impact of modules (Modula-2) or packages (Ada) on LCS has al
ready been addressed in section 4. 9. Such an instance-based
modular program is necessary if the simulation data is to be
adequately distributed across a parallel-processing system.

4.11 Deferred Language Issues

The syntax of a few remaining constructs, while straightforward
to design, has not yet been tackled. Such constructs would be
arbitrary in specification, but necessary for a complete
implementation.

These would include:

* Derived data types
* Range and subrange limits
* Enumerated constants

The existing SIMSCRIPT syntax is also repetitive when defining
attributes of entities, in that each attribute must be declared
twice: once for the inclusion in the entity, the second to set
its scalar type. One possible solution would be a Pascal-like
syntax of

every PLANE
WEIGHT
SPEED
NAME :

has
: integer,
: real,
text

A provision is needed for symbolic constants and inline-procedure
expansion. The SIMSCRIPT language provides the first using the
DEFINE TO MEAN construct, while both C using a macro pre
processor. In contrast, Pascal provides a CONST identifier for
the former, and some implementations have a special type of pro
cedure defined as INLINE to implement the latter.

90

A Language for Concurrent Simulation

Finally, a way is needed to define interfaces between a user's
program and a standard library package, typically an LCS
environment. The Modula-2 import and Ada packages provide a way
of manually referencing such definitions in the routines that use
them. A more powerful, but complex alternative is to use a
programming environment -- such as that found in Smalltalk-80 -
to maintain the interfaces to the standard library. The use of
SIMLAB environment for PC SIMSCRIPT II.5 [Mullarney 1984] would
provide a starting point for development of such system for LCS.

91

CHAPTER 5: DISTRIBUTED SIMULATION USING LCS

One of the design objectives discussed in Chapter 2 was for a
language that would be appropriate for single or multiple
processors. For both practical and conceptual considerations,
the implementation details should be as similar as possible in
order the minimize the implementation dependencies that could
diminish portability between single and parallel systems. One
such issue is how objects are referenced on local and distant
CPU's.

When a model is running as a distributed simulation, the basic
requirements are threefold:

* Distribute the data
* Distribute the computation
* Synchronize data and computation

Various approaches to these requirements were discussed in Chap
ter 2, with particular emphasis on the issue of computation
synchronization.

Even if these general parallel-processing requirements are met, a
simulation may experience yet another problem -- the issue of
non-determinism. Failure to achieve reproducible results -- even
if the differences are minor -- will likely lead to user rejec
tion of the simulation approach.

5.1 Parallel vs. Sequential Execution

As noted earlier, a pure object-oriented system running on an
MIMD system would use the object-message paradigm to implement
parallel processing. Low-level operating system utilities are
called to copy a message list from the sending object's processor
to that of the recipient object, and then place the message on
the receiving object's pending list.

On the other hand, a single-CPU compiled object-oriented language
-- such as Simula or Object Pascal -- uses subroutine calls by
the sending object to the method routine of the recipient object.
Direct calls can be used where static typing is available, while
an indirect table lookup is required where the object is dynami
cally typed.

92

Distributed Simulation using LCS

From a user standpoint, the differences between the two implemen
tations of message passing should be transparent. While a inter
processor message is slower than an intra-processor message, the
behavior and side effects must be identical. This allows a
smooth transition for a model moving from a single processor to a
1,000-node system.

In some distributed simulations the number of objects may greatly
exceed the number of processors. For ease of moving existing
models, as well as performance considerations, it will often be
desire able to group a tightly-coupled set of object instances.
The LCS environment provides a conceptual framework for specify
ing such groupings.

The decision can be made at compile or link time that each in
stance of a class of parent object and its children should be
clustered for sequential computation on a single processor. The
interactions within the environment would be reduced to the
simple sequential ones from the more complex parallel ones, im
proving both the speed and determinism (Section 5.6) of the
simulation.

Such a single-CPU grouping of objects is referred to as a local
environment. It would appear reasonable to make the distinction
on a class rather than instance basis, so that all instances of
the environment (parent object) would be bound to a single-CPU.

Not all environments need be local, however. In a simulation
with a large number of processors and relatively few objects, it
may be advantageous to separate the child from the parent
objects. When the child objects are not bound to the CPU of the
parent object, the term distributed environment is used. If
there are multiple layers of environments, some may be local
while the parent environments are global.

The assignment of an environment class as local or distributed
would be most easily implemented at compile time. However, the
time necessary to recompile a large simulation -- merely to run a
data case with a differring degree of concurrency -- would imply
that a link-binding approach is preferrable.

One way to implement this would be to bias towards the most op
timistic case -- a local message -- which is also where addi
tional message-passing inefficiency would be most noticeable.
All message-passing could call the corresponding method routine
for the receiving object's class. In a distributed environment,
the method would send an explicit me sage using the appropriate
system subroutine.

93

Object-Oriented Distributed Simulation

A single-CPU system is, of course, a degenerate case, in which
the entire program is contained within a local environment. This
mechanism could be used for all message passing, allowing easy
migration from the most sequential to most parallel of systems.

5.2 Referencing Distributed Objects

In single-processor structured languages, objects are
tionally referenced using direct hardware (virtual)
addresses. This approach will also work with shared and
shared memory distributed systems with a common address
such as the Butterfly.

tradi
memory
quasi
space,

However, a different approach is required when object instances
will communicate on MIMD computers using inter-processor
messages. There is no direct access to the objects on the remote
processors, so a protocol must be provided for finding and ad
dressing an object at an arbitrary location in the system.

For the general case of distributed computation, the object
reference variable cannot just be the memory address as in the
single-CPU case. Instead, some form of logical pointer is
required. While the usage of the logical pointer may vary be
tween a local and remote memory access, the representation of the
pointer should be similar. so that the two may be used interchan
geably in utility routines, etc.

The decoding of a logical pointer may require a world map (as
proposed by [Jefferson 1984]) on each processor to decode an ob
ject reference. The map would be indexed or hashed on the logi
cal pointer, and would normally include information such as the
processor that the object is now on.

The need for a world map is increased if the system performs
dynamic relocation, in which the operating system attempts to
balance the load across the various processors. When dynamic
rellocation is allowed, objects cannot no longer assume that the
receiving object is at the same CPU as when previously used. In
particular, a intra-processor memory access can become an inter
processor message transmission at any time.

Dynamic relocation has performance penalties: Each relocation
requires a sizeable overhead, and relocation that breaks a local
environment cluster should probably be avoided. However, dynamic
relocation may be essential in many cases, since even the most
clever of static allocations may not assure adequate utilization
of a large number of processors in a complex simulation.

94

Distributed Simulation using LCS

Given these parameters, what representations of the logical poin
ter are possible? The options are varied, but they include:

Character string. The prototype implementation of
Time Warp ((Beckman 1984]) uses a character string to
uniquely identify each instance in the system. The text
includes the object class name and a number. This
choice is good for debugging but entails serious perfor
mance penal ties, particularly when used within a local
environment.

Numeric Indexes. A combination of various numeric
indexes could be used for efficient table lookups.
Certain minimum ranges must be considered for large
models:

Number of processor nodes > 256
Number of object classes > 256
Number of object instances > 65,536

This suggests that a unique 64-bit pointer could be
built with the processor number, object class and in
stance of object on the processor, as follows:

1 16 17 32

i CPU 1 class i
:--~-----------+--------------:
i instance number i

However, the experience of systems built around such
implementation-dependent limits suggests that even these
apparently generous values may prove inadequate in the
long run.l. 8 In addition, data structures and argument
lists are typically built around the assumption of a 32-
bit parameter, whether by reference or by value.

Handle. The term object handle can be used to
refer to a second-level indirected pointer. In a
single-processor system, the higher-level language will
use a handle, which contains a pointer to a hardware
memory-pointer. If the memory pointers are stored
sequentially in a block of known length, this permits
dynamic memory relocation of objects within a
processor's address space. This could be used in a
single-processor case as follows:

95

Object-Oriented Distributed Simulation

handle ----> pointer ----->
object

For a reference to an object on a remote system,
the pointer is set to an arbitrary invalid value. The
remaining data in the object referenced by the pointer
indicates the object's location in the same way as with
the numeric values.

handle ----> ' --=I:-:'NV~A:-:L:-:I=-=n=--
'-~~;;.;;;;;=;..._i CPU no.
linstance #

As with memory relocation, the use of handles to entries
in the world map facilitates the dynamic relocation of
objects, since updates in the world map on each proces
sor will automatically be reflected in any future access
to a relocated object.

The pointer object could be used to store additional in
formation relevant to the object, and, in particular,
the object's class value or template pointer, which will
be frequently used in method dispatching and attribute
offset calculations. It could also be used for dis
similar object addresses, such as durable objects.

The handle approach could be further enhanced if the memory
manager would detect the particular "remote object" invalid
address and automatically dispatch the appropriate message for an
instance variable reference. Such a memory manager would begin
to resemble the node controller of the Butterfly Muliprocessor
(see Chapter 2).

However, the choice of approach will strongly be influenced by
the particular distributed simulation paradigm used and the
characteristics of the hardware and operating system. In a
shared or quasi-shared memory machine, a simple segmented address
could be used, although more than 32 bits would be required for
typical systems.

96

Distributed Simulation using LCS

5.3 Distributing Data

In an object-oriented simulation, the state of the simulation is
defined by the data in the objects. In a closed object-oriented
implementation, there are no passive objects: state values can be
obtained only by asking an object for the value by sending a
message.

This restriction is unduly harsh when considering an open im
plementation of a compiled, object-oriented language such as LCS.
It may be desireable to allow direct access to the memory loca
tions when on the same CPU, thus making the issue of assigning
data to each processor one of crucial importance in realizing im
proved throughput.

5.3.1 Global Data

Existing global address spaces encourage programmers to base
their large programs around globally-accessible data structures.
Such data can be easily accessed by any routine at any time with
no performance penalty.

For concurrent simulation to be effective in a non-shared memory
machine, this data must be divided up across the various proces
sors -- in parallel with the division of the corresponding com
putational tasks.

The first temptation is to keep the existing address framework,
but make every piece of data an "object" and each data access a
"message." This is a conceptually pure approach, but it quickly
becomes apparent that the system will become overloaded with mes
sages unless some intelligence is applied to the problem of
grouping the data.

For example, consider a linked list
tional single-processor techniques.
fragment:

represented using conven
Take the SIMSCRIPT II.5

for each PLANE in FLEET with PLANE:TYPE = "747"
add PLANE:LIFEJACKET.COUNT to TOTAL

Now let's look at the low-level psuedocode expansion of this
loop. To remind us of the penalty associated with each message
transaction, the messages interactions will be shown as ask
statements, evr&- if the "colon notation" would be more syntacti
cally correct.

97

Object-Oriented Distributed Simulation

PLANE = F .FLEET
'LOOP'

if PLANE <> null

endif

ask PLANE TYPE yielding TMPSTR
if TMPSTR = "747"

endif

ask PLANE LIFEJACKET.COUNT yielding TMP
TOTAL = TOTAL + TMP

ask PLANE S.FLEET yielding PLANE
go LOOP

As you can see, each repition of this very simple loop will
require three messages (TYPE, LIFEJACKET.COUNT, S.FLEET) -- mes
sages which may require relaying through a number of processors.
If the system is running with asynchronous time, each
sending/receiving object pair must be synchronized (section 5.3)
before the data is accessed. 20 A simple operation on a single
CPU has become one creating hundreds of inter-processor messages.

A number of alternatives exist for this and other cases

Cluster objects on one CPU. When the grouping of objects is
tightly coupled and such loops are common, it makes sense to
group the objects on one processor, such as through the LCS
environment.

Use a collection appropriate for distributed data.
Obviously, the standard single-CPU linked list shown is not ap
propriate for a MIMD system lacking shared memory. Alternate ap~
proaches would reduce the message traffic while allowing the data
to be distributed. This topic will be examined later in this
chapter.

Defer all calculations to the object. This approach would
be quite appropriate for a language such a ROSS, but could be
developed with extra programming effort in more conventional
object-oriented languages. In this case, it could be conceptual
ized through the psuedo-code formulation

98

tell each AIRPLANE
(if TYPE = "747 11

Distributed Simulation using LCS

tell OWNER JACKETS(LIFEJACKET.COUNT)
endif)

method JACKETS(COUNT) for ME
add COUNT to ME:TOTAL

end

The first approach is the only one with a speed comparable to the
single-CPU case, but it is applicable only to a certain very
limited class of problems. The second and third are alternatives
when dealing with objects that must be distributed across various
CPU's. All three approaches have their application, and all may
be necessary in order to reduce message traffic to an acceptable
level.

If the data is assumed to be part of an object instance, and can
be used freely (locally) by that instance, then the problem
focuses on the remaining global accesses outside that instance or
environment. Most classes of global objects (see Section 4.8.1)
will be referenced by other objects distributed across a number
of processors.

In analyzing an existing model to distribute the globally shared
data, the potential message traffic and associated delays must be
taken into account before deciding how each class of data is to
be treated.

A decision matrix can be constructed based on the frequency of
access to the object's data (relative to other computations) for
both query and modification. Such a matrix is shown in Figure 5-
1.

99

Object-Oriented Distributed Simulation

CHANGED
OFTEN

NO

USED OFTEN

NO I
I
I
I

either approach-->1
I I
I I
I I
I I

V I
I
I
I
I
I

YES

distribute data
across processors

update via broadcast
messages

--------------------------+-----------------------
YES centralize data

on one processor

access via query
messages

redesign data
relationships

Figure 5-l: Alternatives for treating global data

The case of data that is rarely used at all is the easiest case,
since very little performance impact is found no matter what the
approach. This case lends itself to the least-effort approach,
which may involve adopting the scheme used for a related class of
objects.

If the data is frequently modified (either globally or locally),
but infrequently accessed by other objects, then the conventional
object-message approach is appropriate. This is a clean, stand
ard object-oriented interface.

If the data is static or quasi-static, it should be replicated
across all CPU's where it is used. If a change is made in the
data, a message is broadcast to all replications of the data in
dicating the new value. Terrain data and communications networks
lend themselves nicely to this approach; another example is the
world map of object locations.

If the data is frequently modified AND frequently accessed,
neither approach will produce adequate performance in a many
processor system. An example would be the topology of a rapidly
changing communications network. In this case, the network would
have to be localized by some criterion, such as the object's role
in the system hierarchy, its location in the physical system, or
both.

100

Distributed Simulation using LCS

For example, objects could be broken up into regions. Objects
would deal regularly only with the network in their immediate
region, and any extra-region accesses would be avoided wherever
possible. If the objects (say, messages) in the region spanned
several processors, then either approach could be used within the
region. A geographic region could be implemented as an
environment.

As with environment partitioning, the replication of global data
across multiple processors should be transparent to the program
mer using that data. This could be through a preamble declara
tion of "distributed data" or by providing a standard library of
inherited behaviors for accepting and broadcasting attribute
changes.

5.3.2 Distributed Collections of Objects

Taking a look at the previous example, it seems apparent that a
more general approach needs to be taken in maintaining collec
tions of objects in a parallel-processing system.

In particular, the housekeeping associated with maintaining the
collection needs to be separated from the properties of the ob
jects in the collection. This housekeeping is (or should be)
tightly associated with the object that owns the collection, in
cluding keeping the housekeeping data in the same environment as
the owner object.

For example, Small talk-80 defines the class Link for minor
housekeeping objects associated with LinkedList collections.
Each type of LinkedList has its own corresponding type of Link
that is used to maintain the collection. From an implementation
standpoint, each member is added to the list by creating a new
link, adding it to the owner's linked-list, and placing a
reference to the member object in the link. The maintenance of
the Link entries is comparable to the existing practice of
SIMSCRIPT (and other languages) for maintaining the member
entries. An example of this is shown by the Figure 5-2.

101

Object-Oriented Distributed Simulation

L.iakedList

SoaeObject

SoaeObject

Figure 5-2: A Smalltalk LinkedList

In a distributed simulation, the Link objects should remain on
the same CPU as the owning object, which is responsible for
adding, deleting, and searching through entries in the
collection. This use of a placeholder Link (or equivalent) would
be necessary for all collections in a distributed simulation, ex
cept those contained entirely within a local environment.

The organization of a collection has important implications on
its use in a distributed system. All existing SIMSCRIPT collec
tions are ordered, whether that property is required or not; many
would be more appropriately treated as unordered or keyed.

Ordered collections face issues of non-determinism when it comes
to establishing an order in a parallel-processing environment.
In the absence of some unique and non-reproducible ranking key,
all ordered collections -- even ranked ones -- must default to
some sort of FIFO or LIFO discipline to establish an order be
tween two similar member objects. Messages filing objects in a
collection will be time-stamped, of course, and that time would
normally be used as a secondary ranking criterion.

Many collections do not require an explicit order and could just
as meaningfully be used as unordered collections. Even larger
subclasses of problems require an explicit sort key that can be
used to access an object (or group of objects) that have a par
ticular attribute or attributes. For effective use in dis
tributed systems, the key should be included as part of the Link
maintained on the owner object's CPU.

As noted in the earlier example, many operations on objects in
collections could and should be performed in parallel. But this

102

Distributed Simulation using LCS

will not usually be possible with an ordered collection, which
implies that actions on the member objects will normally be done
sequentially. An example of this would be a waiting line at a
restaurant, in which the host finds the first party of 4 in line
when a four-person table opens up.

However, sequential operations on unordered or keyed collections
will produce random results and are unlikely to be used.
Instead, the operations will typically involve all the member
objects, possibly selecting only a subgroup, as in the example
above. Such operations could be performed in parallel without
concern over possible unusual side-effects.

5.4 Distributing Computations in a Simulation

Many of the object classes alluded to are considered "passive;"
that is, the object exists for storing a data state and not to
perform some active role in the simulation.

However, the bulk of the computation in the model will generally
be associated with "active" objects. The distribution of these
active objects plays an even more fundamental role in maximizing
the throughput of an MIMD machine, since the distribution of the
instances of the active objects will also distribute the computa
tions associated with those objects.

If the operating system supports dynamic relocation, then the ac
tive objects can be freely juggled among available processors,
much as task are assigned to memory in a time-shared virtual.
memory system.

While dynamic relocation offers the potential for maximum
utilization, initial efforts should focus on solutions that do
not require this, much as task swapping systems were implemented
before page-by-page virtual memory systems. The best (in fact,
the only) clue for making static instance assignment comes at the
time of instance creation.

In a strictly hierarchical model, the creation of a new object
can be taken to indicate an object that will be frequently used
by the creator. Thus, the top-level nodes of the hierarchy
should be dispersed throughout the system, and, in turn, the
lower level nodes allocated across adjacent processors.

Most models do not have such a pure hierarchy. A common
is the process generator: the object GENERATOR may
thousands of TELLER instances and, once they are created,
further interactions.

103

example
create

have no

Object-Oriented Distributed Simulation

However, the LCS environment approach provides a conceptual
framework for such instantiation preferences -- particularly
since the child-objects in the environment are accessible only
within that environment and may communicate using attributes of
the parent object.

Within a local environment, of course, new instances must be
created on the same processor. It seems reasonable to allow the
user to make such an explicit assignment, even at the risk of
critical-path bottlenecks later on. As the only penalty is
speed, and most simulations are run many times to gain statisti
cal validity, such a poor human decision can be reversed on later
runs if detected by standard performance analysis tools.

5.5 Non-Determinism in Distributed Simulation

For models that are executed sequentially on a single CPU, modern
simulation languages provide an explicit order of execution for
each event, complete with class- and instance-oriented tie
breaking rules.

Even absent tie-breaking rules, single-CPU models can use a final
tie-breaking algorithm: first in, first out. This means that if
event A schedules an A' for time T, and B schedules a B' for the
same time, the order of (A',B') will be unambiguously determined
by which of the two earlier events was executed "first" on the
processor.

Network solutions assume a well-defined sequential ordering of
interactions along each path betwen an object and other objects.
With explicit ranking of the priority of each path approaching
the object, the results would then be completely deterministic
and reproducible.

However, more general approaches to distributed simulation -
notably Time Warp -- do not provide such an explicit ordering
criterion. The only alternative to non-determinism is by requir
ing explicit tie-breaking rules for ordering all message
arrivals, with each object establishing its own protocol for or
dering messages with simultaneous time stamps. Such an ordering
would then tend to cause more frequent rollbacks in a Time Warp
system.

One way to reduce the incidence of non-determinstic "ties" would
be to introduce psuedo-random noise into the arrival time of each
message as it is sent. If the message times are non-identical
and reproducible, then there will be no ties that need to be

104

Distributed Simulation using LCS

broken on the basis of which sender completed its computations
first.

Unfortunately, psuedo-random number streams themselves would be
come non-deterministic themselves unless maintained on a master
"random generator" object with a deterministic ranking on sample
requests. Such streams are the primary source of stochastic be
havior in Monte Carlo simulations. The errors introduced by non
determinism are multiplied and may grow without damping, since
the values of successive samples will vary widely.

Large simulations have been built without any reliance on psuedo
random values, and such simulations would work well on a parallel
system. However, further research is needed into psuedo-random
generators that do not rely on successive sequential sampling to
generate randomness.

5.6 Interfaces to Time Warp

While the issues discussed earlier in this chapter would apply to
most, if not all, distributed simulation paradigms, the Time Warp
operating system imposes a number of particular requirements upon
a model running under it.

The current prototype implementation of Time Warp is based on a
small number of operating system entry points. These entry
points have been used to construct a simple model to demonstrate
the use of the Time Warp operating system.

However, a more general abstraction is needed in the interface
between a simulation modeler and the operating system, much as a
Pascal programmer does not have to worry about coding the record
buffering logic when writing a wri teln() statement. This
abstraction should be provided by both the lower operating system
layer, and the simulation language system that rests upon it.

In invoking Time Warp system services to send a message from one
object to another, the following information must be provided by
the sending object:

* Logical pointer to recipient object
* Delivery time
* Message selector
* Message arguments

In addition, a dis tinction needs to be made between synchronous
and asynchronous transmissions of messages. This could be part
of the Time Warp protocol, or implicitly layered on top of it.

105

Object-Oriented Distributed Simulation

At the receiving end, each object should specify a special entry
point to explicitly rank incoming messages. Such a behavior, in
voked by Time Warp when sorting messages with identical times,
allows the individual object to order messages by selector
priority or argument values. If used for breaking all such ties,
this method routine would greatly reduce the amount of non
determinism in a distributed Time Warp simulation.

Each method of the recipient object must also designate whether
execution of a particular method will cause a state rollback for
the object. This could be detected by the compiler or explicity
declared by the user, and implemented by providing Time Warp an
ISEVENT(selector) Boolean function for each object.

The current implementation of Time Warp assumes that the state of
an object is defined by a series of sequential memory locations
arranged as a C structure. This precludes more realistic struc
tured data constructs, as well as the particular requirements of
an object-oriented simulation language. For example, if a Time
Warp task is actually local environment of several objects, the
state of the task includes all the instances of objects within
that environment.

A more general state-saving solution could involve a state iden
tification template, which would indicate the format and location
of the various components of the state of the object, including:

* Object attributes
* Dynamic strings
* Recursive variables
* Child objects
* Arrays
* Compound structures, such as linked lists

The approach for specifying a language-independent state iden
tification parallels that for a high-level symbolic debugger.
The Common Object File Format of UNIX System V [ATT 1984] is one
example of such an approach. The template could, of course, be
used to implement a run-time diagnostic and debugger system.

An alternative to the use of a state identification template
would be a replication entry point for each task, which would
place the burden of producing an identical state value upon the
user or his/her support language. This would be the most
flexible approach, but would result in a great deal of wasted ef
fort if more than one language were used for simulation.

106

CHAPTER 6: RECOMMENDATIONS AND CONCLUSIONS

The preceding sections have outlined one possible solution to the
problem of developing large military simulation in a distributed
processing environment.

Other solutions are possible, of course. Some believe that the
development of object-oriented and simulation capabilities should
be made upon one of the modern structured language of the Pascal
family.

Others believe that simulations based upon Lisp offer great
promise, especially in models with strong artificial intelligence
components. However, there are no immediate prospects for paral
lel dedicated Lisp machines, or indications that the language
would handle parallel processing well.

6.1 Hardware and Software Recommendations

6.1.1 Hardware Systems

For discrete simulation, future emphasis should be placed on mul
tiple instruction stream/multiple data stream homogeneous
systems. An effort should be made to identify the ratio of simu
lated objects to system nodes that will produce the most cost
effective use of the computer hardware. It seems unlikely that
this ratio will found to be less than 2:1: a number closer to
20:1 may be appropriate.

Given current models with 200 to 2,000 objects, it would seem
that a 100-processor system would be more appropriate for initial
evaluation than a 1, 000-processor system. Also, given the com
putation and memory requirements of large simulations, resources
should be devoted to assuring a minimum performance at each node
roughly equivalent to a VAX-11/780, rather than a larger number
of PC-class nodes.

At the same time, it is too early to say which of the various
approaches to parallel computation will prove to be significant
in the long run. The technology for no-shared-memory MIMD
hardware is furthest developed, but places the greatest burden on
finding a viable software approach to parallel processing.

107

Object-Oriented Distributed Simulation

Shared and quasi-shared memory machines, such as the Butterfly
and UltraComputer, have the greatest technical obstacles to
overcome. But the provision of shared memory would minimize the
software changes necessary from a single-CPU approach and reduce
the problems of synchronization and non-determinism found in the
no-shared-memory case.

Finally, the small-grain Dataflow architecture offers a formal
hardware and software solution to the problems of synchronization
and non-determinism, while extracting the maximum concurrency
from a problem. As yet undetermined is whether the penalties as
sociated with the architecture exceed the concurrency gain, and
whether Dataflow is a relevant methodology for expressing major
discrete simulation models.

6.1.2 Distributed Simulation Paradigms

The author believes that no feasible alternatives to use of the
Time Warp operating system have yet been developed. It is closer
to implementation and addresses the issues of automatic concur
rency and synchronization better than any identified alternative
for distributed simulation.

The current Time Warp implementation is proceeding towards a
multi-CPU implementation that will do much towards answering
practical questions regarding its efficiency and productivity.
The implementation will also serve to refine the Time Warp con
cepts through actual use.

However, before attempting to develop major simulation models
using Time Warp, the following issues must be addressed:

1) The prototype implementation of Time Warp provides only
limited support for inter-task message passing, requir
ing that the user understand low-level Time Warp im
plementation characteristics when building a simulation
model. Higher-level tools need to be provided -
either through the operating system or a higher-level
language -- to abstract these characteristics to more
general properties not peculiar to Time Warp, such as
message synchronization, side-effects, return values,
and sequential ranking of incoming messages.

2) The current implementation makes unrealistic arbitrary
assumptions about the simplicity of a simulation model
and its data structures. As noted in the previous
chapter, a more general approach is needed to the
definition of the state of an object.

108

Recommendations and Conclusions

3) The Time Warp operating system should include a monitor
for analysis of object-object communications flow,
towards improvements in task-CPU assignment and Time
Warp control parameters.

4) As one alternative to dynamic relocation, the operating
system development team should expore the use of use of
compiler or user clues in the instantiation of new
objects. In certain cases -- such as the LCS environ
ment approach described in Chapter 4 -- such clues
could offer a far less complex and far more effective
alternative to the sizable performance penal ties as
sociated with the dynamic relocation capability.

5) Time Warp implementors should evaluate the desirability
of allowing users to "bundle" tightly coupled objects

such as a tank and its driver -- to allow sig
nificant performance optimizations based on an assump
tion of same-CPU assignment.

6) A series of performance-analysis tools should be
developed to measure the efficiency of the operating
system and applications running on it. Such tools
could include critical path analysis [Berry 1985], and
a breakdown of CPU usage into the categories of message
wait, system overhead, checkpoint/rollback, useful work
and unused time.

6.1.3 Simulation Language

As noted earlier, the trends in current MIMD hardware and dis
tributed simulation paradigms suggest that the object-message
will be a part of future distributed simulations.

This report proposes one such language, which specifically ad
dresses the problems of parallel-processing, as well as including
integrated simulation tools that have been proven in two decades
of building major discrete-event models.

Other approaches would be feasible, particularly if they were to
build on an existing object-oriented language. A compiled lan
guage should be used if speed is not to be sacrificed in favor of
development flexibility.

The language Simula67 would appear to be an obvious choice, as it
is an existing, compiled object-oriented simulation language.
While it has been somewhat successful in Europe, it has tradi
tionally lacked in the United States all the necessary components
for a successful software product including quality

109

Object-Oriented Distributed Simulation

documentation, user training, and professional support.

One of the important factors in Simula' s reception in the U.S.
market has been its basis on Algol-60 which, with a few
exceptions, has been little used here. For whatever obscure cul
tural or historical reasons, Algol never caught on during the
1960s and early 1970s, and its software niche has since been
taken over by one of its children, Pascal. This structured
programming niche will probably be inherited by one of its
grandchildren, such as Ada or Modula-2.

As such, the Object Pascal language uses a newer and more stand
ard basis for a compiled object-oriented language, and the prin
ciples th~lein could be used for either an Object Modula-2 or Ob
ject Ada. The Object Pascal language is conceputally clear and
complete. On the minus side, the relative youth of the language
leaves it unclear as to what practical impact it will have on the
programming world. Also, the flexibility of its object orienta
tion is severely limited when compared to Smalltalk or Flavors,
although this may be a slightly unfair comparison.

The language C++ offers, in the author's opinion, a more elegant
solution to the problem of a compiled object-oriented language.
However, its owners have thus far shown little inclination to
market it as a commercial product and may never do so. In
addition, those who are not fans of the parent language C will
find that it retains many of the structured programming
deficiencies of its parent.

For either Object Pascal or C++, a complete simulation support.
system would also have to be developed to provide both compile
and run-time tools for the development of large models. The
design of such extensions could be based on one of the existing
procedural simulation languages, such as Simula or SIMSCRIPT.
The number of man-years required for such a solution would depend
on the completeness of the solution, although the use of an ex
tensible object-oriented base language could be expected to
shorten the process considerably.

110

Recommendations and Conclusions

6.2 Recommendations for Further Directed Research

A new generation of simulation tools for use in either a single
or multi-processor environment should be developed in three
phases:

Phase 1: Language Design and Selection

Identify a completed design for a simulation language
appropriate for distributed simulation. One such
design would be the Language for Concurrent Simulation
described herein. Further research would be needed to
develop a design based on the alternative languages
discussed in the preceding section.

Phase 2: Implement A Single-CPU Prototype

(a) Implement the distributed simulation language on a con
ventional single-CPU system, such as being done with
the Time Warp operating system.

(b) Adapt an existing combat model -- or a significant
fragment thereof -- to use this prototype simulation
language. For this task to be successful, the model
should be medium-sized (5,000-20,000 lines) and the
conversion should be done by experienced simulation
analysts with a proven track record in military models.

For example, an AMIP model could be identified and the
Army team that developed it could port it to the new
system. This development should be in close consula
tion with an implementor or instructor from the group
implementing (a).

(c) Run the newly-ported model in a single-CPU environment
using a parallel-processing performance analyzer such
as the Time Warp simulator. A critical path analysis
(such as described in [Berry 1985]) performed

(d) Evaluate the results of the model development and use.
Is the simulation methodology natural? Is it flexible
enough to develop major simulations? Does it allow ex
pression of adequate parallelism? What could the con
version costs be expected to be for existing models?

111

Object-Oriented Distributed Simulation

Phase 3: Parallel-processing Implementation

(a) Any simulation language(s) validated in Phase 2 should
be implemented on the appropriate hardware and operat
ing system configuration. The initial implementation
should be on a MIMD system with a moderate number of
nodes (32 to 256).

Should current evaluations prove favorable, it is an
ticipated that this initial test system would be Time
Warp on a Hypercube-type computer.

(b) The model developed in Phase 2 should be modified to
increase the identified parallelism. Modifications
should also be made to meet the requirements of the
particular hardware/operating system configuration.

(c) When the preceding tasks are completed, accurate
measurements would be obtained under the widest pos
sible range of conditions. These tests should include
large and small data scenarios, larger and smaller
hardware configurations (by disabling processors, if
necessary) and alternate assumptions regarding object
coupling and object-processor assignment algorithms.

The results of these measurements should attempt to
identify a method of estimating the processor utiliza
tion curve for a given hardware/data combination, and
the make predictions as to the proper system configura
tions for the cost-effective use of parallel
processing.

(d) Evaluate the feasibility of all three simulation com
ponents -- language, operating system, and hardware -
for use in production simulation applications. Make
recommendations for further modifications or use of
these components.

It is the author's opinion that a simulation language can be
developed for running major military models in a distributed
environment. It is recommended further research towards running
such models be funded using the three-phase approach outlined
above.

112

NOTES

1. Personal communication, Dave Toved, Motorola Seminconductor
Inc., March 21, 1985.

2. Personal communication, Dave Mankins and John Goodhue, Bolt,
Beranek & Newman, March 20, 1985.

3. Personal communication, Jim Blossom, Los Alamos National
Laboratories, March 28, 1985.

4. At first glance, it might appear easiest to map each
"process" of a user's simulation to a "process" of the Time Warp
operating system. A careful examination, however, suggests that
this usually will not be the case, as discussed further in Chap
ter 5.

5. This approach is an exact parallel to the UNIX concept of a
"pipeline", which has been shown through extensive use to work
quite reliably and effectively in coordinating multiple sequen
tial tasks on a single-CPU system. The finite limit is typically
10,240 bytes, or about three pages of solid text.

6. "How to Write User-friendly Software," lecture by Larry Tes-.
ler of Apple Computer, Inc., MacWorld Exposition, San Francisco,
California, Feburary 23, 1985.

7. Sometimes this is implemented literally, by partitioning the
machine's actual address space into regions occupied exclusively
by objects of the same type. More often, however, the machine's
natural addressing is augmented by type bits, or else unused low
order address bits are used for type information, since usually
the smallest-sized object is much larger than the machine's ad
dressing granularity.

8. At first glance, it would seem necessary to restrict the
hierarchy of clases to acyclical directed graphs, to avoid recur
sive definitions. As it turns out, it is possible-- and even
desirable -- to relax this restriction.

9. If the user is not allowed direct access to attributes, there
is no way for him to create attribute accessor methods.

113

Object-Oriented Distributed Simulation

10. Although the terms "instance-based inheritance" and
"message forwarding" refer to two totally different concepts,
instance-based inheritance will be shown in practice to be a spe
cial case of message forwarding.

11. I am grateful to Dr. Alasdar Mullarney for first making this
suggestion, and for fighting the temptation to use the delimiter
in SIMSCRIPT II.5 for more gratituous purposes.

12. This could perhaps be more clearly expressed as

PLANE:ENGINES(ENGINE.NO):RPM

where ENGINES is an array of pointers to ENGINE objects. The
syntax is less ambiguous than the combination of left- and right
associative operators in

PLANE:RPM(ENGINE.NO)

It is also more cumbersome.

13. The compiler could attempt to automatically detect the first
usage of the value and enforce the synchronization at that point,
but would introduce a great deal of conceptual and implementation
complexity for what is likely to offer only a marginal benefit.

14. The use of postional parameters is a tempting alternative.
This is produces a less readable result, but is more compact.
More signficantly, it provides much greater flexibility, as
demonstrated by the constructor facility of C++ [Stroustrup
1984a]. The list of values then becomes an argument list to the
initialization method, which can decide their meaning as it
chooses.

An added benefit is that the argument list syntax parallels that
of the activate statement of SIMSCRIPT II.5.

15. For strict genetic accuracy, the terms "twins" and
"siblings" or "siblings" and "stepsiblings" might be more
appropriate, but this would be a lot more confusing.

16. The order might in fact, be reversed, if each instance of
PARENT were executed asynchronously in differing cpu's.

17. It is tempting not to require explicit object pointers for
changing private attributes of the parent object, since they are
like the local variables of an Algol outer block or a Modula-2
module. Strict consistency between public and private
attributes, however, would require that they be used, as in

114

Notes

AIRPLANE:AUTO.SET.

18. Common examples of painful transitions due to memory ar
chitecture addressing limits include Univac Exec 8 and Honeywell
GCOS-8 (262k words), IBM's MVS (16mb), and the as yet unresolved
issue of IBM's PC-DOS (640kb). To ignore the history of such
design failures is to be doomed to repeat them.

19. It has been proposed that users be forced to explicity ack
nowledge each use of message-passing to make sure they are aware
of its performance cost and thus use it sparingly. This computer
science purism is analogous to asking each user to program in
machine code to make sure (s)he knows each byte that is required
by the program!

The whole history of modern languages has been to provide more
powerful tools to users, and then caution them when a great deal
of user convenience is exacted at the expense of performance.
Users of Lisp and APL can attest that the productivity gain for
certain classes of problems is worth whatever the cost in com
puter resources.

Discipline alone will not solve the problem of building effective
concurrent simulations. The appropriate tools and proper train
ing will, in the author's opinion.

20. The implementation of the Time Warp operating system
[Beckman 1984] has proposed that this restriction be relaxed to
enforce only a one-way synchronization. If the receiving object
is ahead of the sender in simulated time, it will go to one of
its snapshots of its previous states (saved for rollback
purposes) to satisfy the query. The granularity of the snapshot
approach (to save memory) may require some degree of re
execution.

This suboptimization has a potential for significant performance
improvement, particularly in avoiding deadlock situations. But,
from a language design standpoint, it can be ignored, since it
offers at most a 50% reduction in synchronization requirements.

21. To conform to trademark regulations by the Ada Joint Program
Office, use of the name "Ada" for an Ada-like superset would
require a frequent disclaimers as to its non-conformance to
ANSI/MIL-STD-1815A. Another name might thus be more appropriate.

115

GLOSSARY

The number listed in parentheses represents the section where
term was first introduced.

antimessage (2.2.1) a Time Warp message that is used during
rollback to cancel a message sent earlier in the simulation.

around method (3.4) an approach to method combination. An around
method is given complete control when the corresponding message
is received, and may choose which, if any, of the inherited
methods to invoke.

asynchronous message (4.5.1) a message that allows the sending
object to continue before the receiving object completes its
corresponding method.

asynchronous time (2.2) an approach to distributed simulation in
which each object may have its own value for simulated time.

attribute (3.2) a variable associated with each instance of an
object.

browser (4.9) an editor for durable objects, usually with a
visual screen-oriented interface.

child object (4.8.1) an object that is declared within the scope
of another object, which is referred to as its parent object.

class (3.2) a group of related objects that share similar
properties, but may have different values

class-based inheritance (3.5) an inheritance in which all
instances of a subclass inherit one or more properties from its
superclass.

class variable (4.7.1) a value associated with all instances of a
class of objects.

closed implementation (3.1) refering to object-oriented
programming, an approach that requires use of the object-message
approach to the exclusion of all others.

collection (4.2.3) a grouping of one or more objects.

cousin (4.8.1) an instance of a different class of object that
shares a common parent object.

117

Object-Oriented Distributed Simulation

daemon (3.4) a method invoked before or after a primary method.
Along with around methods, a common approach to method
combination.

dataflow (2.2.3) an approach to parallel processing that requires
a sequential structuring of a problem's data relationships.

deep typing (4.2.4) a form of type validation that requires only
that the specified class be among the superobjects of the given
object.

distributed environment (5.1) an environment in which the parent
and child objects may be scattered across two or more CPUs.

durable object (4. 9) an object that remains across subsequent
runs of a program. Although manipualted like other objects, the
representation of a durable object is likely to resemble a
database.

dynamic relocation (5.2) moving an object in a distributed
simulation from one CPU to another after it is created.

dynamic typing (3.2) the class of an object is not known at
compile time, but instead is only available at run time and can
can be used to make decisions at that time.

environment (4.8.1) a group of objects, comprising an instance of
a parent object and each of its corresponding child objects.

event (4.1) in simulation, an association of a simulated time
with one or more specific actions. Also a class of objects in
SIMSCRIPT family of languages.

event message (4.5.2) a Time Warp message that contains side
effects that change the state of an object.

generic object (3.5) the superobject in an instance-based
inheritance. The term is used by both LCS and ROSS.

global virtual time (2.2.1) the minimum of the local virtual time
of each task; a measure of progress in a Time Warp simulation.

homogeneous system (2.1) an MIMD computer which is built by
combining a number of identical computers with identical roles.

implicit synchronization (2.2.1) an approach to distributed
simulation that does not require the user to explicitly specify
the synchronziation points for a simulation.

118

Glossary

implied subscripting (4.2.2) a situation in which the class and
instance associated with an attribute may be safely deduced by
the compiler. Normally, only used within a corresponding method
routine for that class.

instance (3.2) an individual copy of a class of objects.

instance-based data hiding (4.8) the use of parent and child
object instances to prevent other instances of the same classes
from accessing the same data.

instance-based inheritance (3. 5) the inheritance of a property
from an instance of a generic object by a specific object.

lazy cancellation (2.2.1) an implementation of Time Warp that
attempts to minimize the use of antimessages during rollback.

local virtual time (2.2.1) in Time Warp, the value of simulated
time, as seen by a particular task.

logical pointer (5.2) a mechanism for referencing an object
instance that is independent of its hardware representation. To
access the actual object, a logical pointer will normally require
translation to obtain the hardware location.

message (3.3) the fundamental interaction between objects in an
object-oriented program. Sent to a specific instance of an
object by another object, it will include a message type
("selector") and may optionally send or received one or more
arguments.

message forwarding (3.5) an apprproach to instance-based
inheritance that specifies inherited behaviors on a message-by
message basis.

method (3.3) a procedure associated with a particular message and
object class.

method combination (3.4) a mechanism in which a subobject
combines its own methods for a message with those of one or more
superobjects.

MFLOPS (2.1) millions of floating pointer operations per second.

MIMD (2.1) multiple instruction stream, multiple data stream.

MIPS (1.2) milllions of instructions per second.
integer and general performance.

module (2.3) see unit.

119

A measure of

Object-Oriented Distributed Simulation

monitored variable (4.1) a SIMSCRIPT II.5 variable that uses a
method routine to control reads or writes to an attribute.

object (3.2) conceptually, the lowest level of object-oriented
programming. From an implementation standpoint, a block of data
(similar to a Pascal "record") that has associated with it a
section of program. Depending on the context, this term may be
used to refer to either a class of objects or an instance of one
of those classes.

object handle (5.2) a form of logical pointer which uses a
second-level indirection to refer to objects on the same CPU.

object-oriented programming (3.1) a paradigm for computation
based on the specification of program states in terms of objects
and program interactions by use of messages.

open implementation (3.1) referring to object-oriented
programming, an approach that allows the use of other programming
paradigms, such as those found in conventional algorithmic
languages.

overloading (2. 3) the declaration of a single name for two or
more dissimilar uses. In Ada, strong typing allows unambiguous
interpretation of an overloaded name.

overriding (3.4) when a subobject supersedes the method of its
superobject.

package see unit.

parent object (4.8.1) the object that defines the scope of a.
child object.

permanent entity (4.2.2) in SIMSCRIPT, a class of objects in
which all instances of the class are allocated simultaneously.

primary method (3.4) a method of a superobject that is completed
replaced by shadowing or overriding.

private attribute (4.2.1) an attribute of an object that is not
accessible to other objects.

process (2.3) an approach to sequencing a series of events
associated with a single simulation object.

public attribute (4.2.1) an attribute of an object can be
accessed by other objects, usually by sending a message.

query message (4.5.2) a Time Warp message that does not cause
side-effects that change the state of an object.

120

Glossary

rollback (2. 2.1) the phase of a Time Warp simulation after a
causality error is detected and before its effects have been
nullified.

segment manager (5.2) a program that assigns unique identifiers
to disk-based durable objects.

set (4.2.3) the standard ordered collection used by the SKMSCRIPT
family of languages.

shadowing (3.4) similar to overriding, except used when referring
to the combination of methods in a multiple-path inheritance.

shallow typing (4.2.4) a form of type checking that requires that
the given object be an instance of one particular class.

sibling (4.8.1) another instance of the same class of child
object.

specific object (3.5) the subobject in an instance-based
inheritance. The term is used by both LCS and ROSS.

state identification template a standardized table that indicates
to Time Warp how the state of the task must be saved.

static typing (3. 2) the class of an object is fixed at compile
time, an important characteristic of Pascal-family languages

strong typing (3.2) see static typing.

subclass (3.4) a class of objects that inherits properties from
another class of objects, referred to as its superclass.

subobject
object.
depending
is used.

(3.4) the object that inherits a property from another
May refer to either a subclass or specific object,
on whether a class-based or instance-based inheritance

superclass (3.4) the class of objects containing properties which
are inherited by another object class.

superobject (3.4) the object from which another object inherits a
property. May refer to either a superclass or generic object,
depending on whether a class-based or instance-based inheritance
is used.

synchronous message (4.5.1) a message that causes the sending
object to wait until the receiving object completes its
corresponding method.

121

Object-Oriented Distributed Simulation

synchronous time (2.2) an approach to distributed simulation in
which simulation time is maintained as a single global value for
all objects and CPUs.

task (2. 2.1) a single operating system job; used to refer to
processes under the Time Warp operating system.

temporary entity (4.1) the basic object of SIMSCRIPT II.5.

throughput (2.1) the ratio of useful work done by a computer to
the amount of elapsed time required to do it.

time-elapsing method (4. 6. 1) a method which may require a non
zero amount of simulated time to complete.

Time Warp (2.2.1) an approach to distributed simulation that uses
asynchronous time and implicit synchronization.

type see class.

unit (2.3) a group of related procedures in the UCSD dialect of
Pascal, and a precursor to the Modula-2 module and the Ada
package.

untyped (3.2) no attempt is made to verfiy the class of an
object, either at compile time (static typing) or at run time
(dynamic typing).

utilization (2.1) the percentage of available computational power
spent doing useful work.

vector processing (2.1) parallel processing achieved through
expression of a problem as a matrix of related equations. Also
referred to as array processing.

world map (5.2) as proposed in Time Warp, a translation table
between a logical pointer and the actual CPU/machine address of
an object. A copy is maintained on each CPU.

122

REFERENCES

[Abelson 1985] H. Abelson and Gerry J. Sussman, Structure and
Inter retation of Computer Pro rams, M.I.T.
Press, Cambridge, MA: 1985

[AMMO 1983] "Army Model Improvement Program Management
Plan," Army Model Improvement Program
Management Office (Ft. Leavenworth, KS: March
1983)

[Army 1983] "Army Model Improvement Program," Army
Regulation 5-11, Department of the Army
(Washington, DC: August 1983)

[ATT 1984] "Common Object File Format," UNIX System V
Support Tools Guide, Release 2. 0, AT&T
Technologies, (Winston, NC: December 1984)

[Beckman 1984] Brian C. Beckman, "Time Warp Implementation
Document," Jet Propulsion Laboratory
Interoffice Memorandum 335.1-249 (Pasadena,
CA: September 1984)

[Berry 1985] Orna Berry and David Jefferson, "Critical path
analysis of distributed simulation,"
Proceedings of the Conference on Distributed.
Simulation 1985, Society for Computer
Simulation, (La Jolla, CA: January 1985), pp.
57-60

[Birtwistle 1973] Graham Birtwistle, et al, SIMULA BEGIN,
Auerbach Publishers Inc. (Philadelphia, PA:
1973)

[Birtwistle 1984a] Graham Birtwistle, et al, "Process Style
Packages for Discrete Event Modeling: Data
Structures and Packages in SIMULA,"
Transactions of the Societ for Com uter
Simulation 1 1 , May 1984, pp. 61-82

[Birtwistle 1984b] Graham Birtwistle, et al, "Process Style
Packages for Discrete Event Modeling: Using
Simula's class SIMULATION," Transactions of
the Society for Computer Simulation 1 (2),
December 1984, pp. 175-195

123

Object-Oriented Distributed Simulation

[Bratley 1983] Paul Bratley, Bennett L. Fox and Linus E.
Schrage, A Guide to Simulation, Springer
Verlag, (New York: 1983)

[CACI 1985] Major Military Simulations Written in
SIMSCRIPT II.5, CACI, (La Jolla, CA: January
1985)

[Chandy 1981] K. M. Chandy and J. Misra, "Asynchronous
Distributed Simulation via a Sequence of
Parallel Computations," Communications of the
ACM 24 (4), April 1981, pp. 198-206

[Clark 1982] Randy Clark and Stephen Koehler, The UCSD
Pascal Handbook, Prentice-Hall, (Englewood
Cliffs, NJ: 1982)

[Concepcion 1985] Arturo I. Concepcion, "Mapping distributed
simulators onto the hierarchical multi-bus
microprocessor architecture," Proceedings of
the Conference on Distributed Simulation 1985,
Society for Computer Simulation, (La Jolla,
CA: January 1985), pp. 8-13

[Cosell 1984]

[Curry 1983]

[Dongarra 1984]

[Elias 1985]

[Garrison 1984]

[Goldberg 1983]

Bernie Cosell, et al, "An Object-Oriented
Programming Facility for C," Bolt, Beranek and
Newman, (Cambridge, MA: May 1984)

Gael A. Curry and Robert M. Ayers, "Experience
with Traits in the Xerox Star Workstation, 11

Proceedin s of Workshop on Reusabili t in
Programming, ITT Programming, Stratford, CT:
1983)

Jack J. Dongarra, "Performance of Various
Computers Using Standard Linear Equations
Software in a Fortran Environment," Technical
Memorandum, Argonne National Laboratory
(Argonne, IL: December 1984)

Antonio L. Elias and John D. Parraras,
"Object-Oriented SIMSCRIPT, 11 (Cambridge, MA:
February 1985)

William J. Garrison, NETWORK II.5 User's
Manual, Version 1.1, CACI, (Los Angeles: 1984)

Adele Goldberg and David Robson, Smalltalk-80:
The Lan ua e and its Im lementation, Addison
Wesley, MA: 1983

124

[Goodhue 1985]

[Gurd 1985]

[INMOS 1984]

[Jefferson 1983]

[Jefferson 1984]

[Jefferson 1985]

[Keohan 1984]

[Kiviat 1968]

[Kozlov 1985]

[Koved 1984]

References

John Goodhue, "The Butterfly Multiprocessor,"
Bolt, Beranek and Newman, (Cambridge, MA:
January 1985)

J.R. Gurd, C.C. Kirkham and I. Watson, "The
Manchester Prototype Dataflow Computer,"
Communications of the ACM 28 (1), January
1985, pp. 34-52

INMOS Limited, Occam Programming Manual,
Prentice-Hall International, (London: 1984)

David Jefferson and Harry Sowi zral, "Fast
Concurrent Simulation Using the Time Warp
Mechanism; Part I: Local Control," Rand Note
N-1906AF, The Rand Corporation, (Santa Monica,
CA: June 1983)

David Jefferson, et all, "Implementation of
Time Warp on the Cal tech Hypercube," JPL
(Pasadena, CA: October 1984). Later published
in Proceedings of the Conference on
Distributed Simulation 1985, Society for
Computer Simulation, (La Jolla, CA: January
1985), pp. 70-75

David Jefferson and Harry Sowizral, "Fast
concurrent simulation using the time warp
mechanism," Proceedings of the Conference on
Distributed Simulation 1985, Society for
Computer Simulation, (La Jolla, CA: January
1985), pp. 63-69

Susan Keohan, An Introduction to Clascal,
Apple Computer, Inc., (Cupertino, CA: July
1984)

Philip J. Kiviat, Richard Villanueva and Harry
M. Markowitz, The SIMSCRIPT II Programming
Language, The RAND Corporation, Report R-460-
PR, (Santa Monica, CA: October 1968)

Alex Kozlov, "NYU's UltraComputer Network,"
SIAM News 18 (2), Society for Industrial and
Applied Mathetmatics, March 1985.

Larry Koved, "The Object Model: A Historical
Perspective," (draft) IBM Thomas J. Watson
Research Center, (Yorktown Heights, NY:
October 1984)

125

Object-Oriented Distributed Simulation

[Krasner 1983]

[Law 1982]

[Markowitz 1963]

[Markowitz 1984]

[May 1984]

[McArthur 1982]

McGraw 1983]

[Millard 1975]

[Mullarney 1982]

[Mullarney 1983]

Glenn Krasner, editor, Small talk-80: Bits of
History, Words of Advice, Addison-Wesley,
(Reading, MA: 1983)

Averill M. Law and W. David Kelton, Simulation
Modeling and Analysis, McGraw-Hill, (New York:
1982)

Harry M. Markowitz, Bernard Hausner and
Herbert W. Karr, SIMSCRIPT: A Simulation
Programming Language, Prentice-Hall,
(Englewood Cliffs, NJ: 1963)

Harry M. Markowitz, Ashok Malhotra, and Donald
P. Pazel, "The EAS-E Application Development
System: Principles and Language Summary,"
Communications of the ACM 27 (8), August 1984,
pp. 785-799

David May and Roger Shepherd, "Occam and the
Transputer," Proceedings of the IFIP WG10.3
Workshop on Hardware-Supported Implementation
of Concurrent Languages in Distributed
Systems, North Holland Publishing Company
(October 1984)

David McArthur and Philip Klahr, The ROSS
Language Manual, Rand Note N-1854AF, The Rand
Corporation, (Santa Monica, CA: September
1982)

James McGraw, et al, SISAL -- Streams and
Iteration in a Single-Assignment Language:
Language Reference Manual, Version 1.0,
Lawrence Livermore National Laboratory,
(Livermore, CA: July 1983)

Wiliam Millard, "Hyperdimensional Micro-P
Collection Seen Functioning as Mainframe,"
Digital Design 5 (11), November 1975, p. 20

Alasdar Mullarney, "Tabletop SIMSCRIPT Design
Reassessment," CACI internal memorandum, (Los
Angeles, CA: December 1982)

Alasdar Mullarney, editor,
Programming Language, CACI,
1983)

126

SIMSCRIPT II. 5
(Los Angeles:

[Mullarney 1984]

[Nugent 1983]

[Russell 1969]

[Russell 1983]

[Seitz 1985]

[Stallman 1984]

Alasdar Mullarney, et al,
User's Manual, Release
Angeles: December 1984)

References

PC SIMSCRIPT II. 5
1.2, CACI, (Los

Richard 0. Nugent, "A Preliminary Evaluation
of Object-Oriented Programming for Ground
Combat Modelling," Working Paper 83W00407, The
MITRE Corporation, (Me Lean, VA: September
1983)

Edward C . R us s e l l , "Automatic Program
Analysis," UCLA School of Engineering and
Applied Science, Report 69-12, (Los Angeles:
March 1969)

Edward C. Russell, Building Simulation Models
in SIMSCRIPT II.5, CACI, (Los Angeles: 1983)

Charles L. Seitz, "The Cosmic
Communications of the ACM 28 (1),
1985, pp. 22-33

Cube,"
January

Richard Stallman, Daniel Weinreb, and David
Moon, Lisp Machine Manual, Sixth Edition, MIT
Artificial Intelligence Laboratory,
(Cambridge, MA: June 1984)

[Stroustrup 1984a] Bjarne Stroustrup, "Data Abstraction
Bell Labs Technical Journal part 2,
1984

in C++,"
October

[Stroustrup 1984b] Bjarne Stroustrup, The C++ Programming
Language -- Reference Manual, C++ Release E
Documentation, AT&T Bell Laboratories, (Murray
Hill, NJ: November 1984)

[Tesler 1985a]

[Tesler 1985b]

[West 1984]

[West 1985]

Larry Tesler,
Computer, Inc. ,

"Object Pascal Report," Apple
(Cupertino, CA: February 1985)

Larry Tesler, "Object Pascal
Clascal," Apple Computer, Inc.,
CA: February 1985)

vs. Lisa
(Cupertino,

Joel West and Glen Johnson, SIMSCRIPT II.5
User's Manual for VAX/VMS, Release 4.3, CACI,
(Los Angeles: May 1984)

Joel West and Timothy Lynch, UNIX SIMSCRIPT
II.5 User Manual, Release 1.2, CACI, (La
Jolla, CA: July 1985)

127

Object-Oriented Distributed Simulation

[Wilson 1984]

[Ziegler 1985]

Pete Wilson, "Highly Concurrent Systems Using
the Transputer," INMOS Technical Note 5, INMOS
Corporation, (Colorado Springs, CO: 1984)

Bernard P. Ziegler, "Discrete event formalism
for model based distributed simulation,"
Proceedings of the Conference on Dis tri bu ted
Simulation 1985, Society for Computer
Simulation, (La Jolla, CA: January 1985), pp.
3-7

128

APPENDIX A: A SUMMARY OF LCS CONCEPTS

The following sample statements use descriptive names to
summarize the fundamental object-oriented concepts of a Language
for Concurrent Simulation. LCS keywords are shown in lower case,
and the language keyword for the corresponding property is
underlined. User-defined values are shown in upper case, and the
key value is shown in bold. The use of elipses indicates an
incomplete statement or program fragment.

A.l Objects (classes)

every OBJECT_CLASS

A.2 Public Attributes

every OBJECT has ATTRIBUTE

A.3 Collections (sets)

every OWNING OBJECT owns COLLECTION
every MEMBER-OBJECT beiOngs to COLLECTION

A.4 Message passing

tell OBJECT MESSAGE(ARGUMENTS)
ask OBJECT MESSAGE(ARGUMENTS)
let ... = OBJECT~MESSAGE(ARGUMENTS)

A.5 Message receiving

method MESSAGE TYPE for OBJECT CLASS

end

A.6 Class-based inheritance

every SUB OBJECT is SUPER OBJECT

129

Object-Oriented Distributed Simulation

A.7 Instance-based inheritance

every GENERIC_OBJECT refers to SPECIFIC OBJECT

A.8 Private Attributes

object PARENT OBJECT
define PRIVATE ATTRIBUTE as ...

end

A.9 Parent and child objects (Object Environments)

object PARENT OBJECT
every CHILD OBJECT

end

130

APPENDIX B: EXISTING OBJECT-ORIENTED LANGUAGES

This chapter is a survey of some significant object-oriented
languages and object-oriented extensions to existing languages.
The Appendix describes two object-oriented languages, SIMULA and
Smalltalk-80, object-oriented extensions to C and Pascal, and two
packages written in Lisp to enable writing object-oriented
simulations: ROSS and the Flavor System.

Several languages have been omitted, perhaps arbitrarily.
C/Flavors, described in [Cosell 1984], is an implementation of
the Lisp Flavor System (Section B.6) in the C language. It is
less C-like than C++ (Section B.3), although both languages
retain existing concepts for ordinary algorithmic functions.

Docmentation for the Traits package of the Mesa programming
language is less readily available than for the extensions to
other structured languages described in this chapter. However,
the system does provide true multiple inheritance in a compiled
language, one of the primary goals of a Language for Concurrent
Simulation. The experience of [Curry 1983] is instructive,
particularly in the area of a programming environment to support
compile-time resolution of state variable locations.

B.l SMALLTALK-80

The prime example of a closed object-oriented programming
language, Smalltalk-80 is the successor to the early prototypes
of active object implementations, such as Actor. A complete
definition of the language can be found in [Goldberg 1983].

Small talk is more of a system than a language, including the
editor, graphics manager, compiler, interpreter and the operating
system itself in an integrated package. The single most striking
feature of Smalltalk is that, being a closed implementation, all
entities in the language are objects (including numbers) and all
operations are performed by message-passing. The first
consequence is that there is no special construct for sending a
message; the basic Smalltalk sentence is of the form:

receivingObject messageName argument! argument2 •..

131

Object-Oriented Distributed Simulation

In Smalltalk nomenclature, receivingObject is sent the message
messageName argumentl argument2, and messageName is called the
message selector (we will call it the message name). Sometimes,
the result may look extremely algebraic; for example:

X <- 3 + 4

results in the assignment of the object 7 as the value of the
object x; however, this is obtained by sending the object 3 the
message +4, where + is the message name and 4 is the argument.
Objects of class number understand all the algebraic operation
messages of course, but the analogy breaks down when performing
trigonometric operations:

x <- theta sin

In addition to these simple message formats, Small talk allows
message names to be "split" between the arguments. For example,
instead of having a form such as:

personalAccount addNewExpense 34.65 rent check

where 34.65 and the objects rent and check are the arguments of
the addNewExpense message sent to personalAccount. Instead,
Smalltalk allows you to have a compound message name made up of
spend: for: and by: in the following way:

personalAccount spend: 34.65 for: rent by: check

where all three keywords spend:, for: and by: make up the message
name, so that spend: for: and when would be interpreted as a
different, unrelated message. This is a readability feature.

As documented by [Goldberg 1983], the first version of Smalltalk-
80 allows objects to be structured in a simple-tree hierarchy
only; that is, each object has one and only one superobject above
it, from which it inherits both attributes and methods. However,
Version 2.0 provides for multiple inheritance, although the
authors feel that current syntaf does not adequately deal with
the added conceptual complexity.

Shadowing, (called overriding in Smalltalk) is possible for both
attributes and methods, and is performed by simply defining a
similarly-named attribute or method at the lower level class.

132

Existing Object-Oriented Languages

There is also message deferral. In a method, an object of a
given class may send to itself a message it cannot handle, but
that one of its subclasses will. For example, a method for the
class figure may send itself the message rotate even if there is
not rotate method defined for figure. The object "knows" there
will never be actual instances of simply figure, but only of
subclasses (such as triangle and square) which include the figure
class, as well as methods for rotate.

There is the inevitable object self (called a pseudo-variable in
Smalltalk) which can be used by a method to refer to the current
instance. There is also the very interesting object super, which
is like self, but which, when sent a message, starts looking for
the methods starting with the object's first superobject, thus
allowing the programmer to override method shadowing in the code.
Actually, this feature is not a frill, but is required in
Smalltalk to properly interact with the message deferral
mechanism.

The characteristics of a class of objects, that is, their
attributes and methods, are determined by a "template" that is
itself an object of class -- what else -- Class. Instances of
objects of a given class are created by sending this object the
New message. Inevitably, there are classes of Class objects,
leading to the concept of "Metaclasses," all the way up to the
original root class, Object. This is a result of the closed
object-orientation of Smalltalk and should be of no consequence
in the design of an open implementation such as LCS.

Instance variables are truly local; only the methods for a
particular object class can access that object's instance
variables (and then only for the particular instance that.
received the message). All cross-accesses, if required, must be
performed by message-passing. Messages are bi-directional, that
is, they may return a value. Since everything in the Small talk
universe is an object, there is no need for an "object mode"
variable: integers, reals and strings are "special cases" of
objects.

In addition to the instance variables (attributes) of objects,
Smalltalk allows the following scoping of variables:

1. Temporary variables, dynamic variables within methods
similar to SIMSCRIPT event procedures' local variables.

133

Object-Oriented Distributed Simulation

2. Class variables, a unique concept of variables shared
by all the instances of a single c 1 ass. C 1 ass
variables can be conceptualized as "belonging" to the
a p p r o p r i ate c 1 ass o b j e c t . A 1 though they c an be
accessed by a method as if they were an instance
variable, they are initialized by having the message
ini t being sent to the class object. Therefore, the
user may want to create an ini t method for the class
object to perform this initialization, as if they were
instance variables of the class object. This is all
very simple, elegant and confusing.

3. Global variables, accessible to all objects; since all
objects are, in the last resort, members of a super
superclass Object, globals can be conceputalized as
class variables of this superclass.

4. Pool variables, a scoping of variables somewhat between
class and global. They are shared by all instances of
a set of classes.

The combination of restricting the object hierarchy to a simple tree
and the existence of class variables allows for a very elegant
combination of class inheritance and instance inheritance. Suppose
that we have a class soldier, whose instances may belong to a blue
army or a red army. All blue soldiers will have "m16" as the value
of the instance variable pointWeapon, and all red soldiers will have
the value "ak47" for that attribute.

Instead of having a true instance variable pointWeapon, it is
possible to create two "Dummy Classes", blueSoldier and redSoldier,
with no instance variables (and no methods), but with the class
variable pointWeapon initialized to the two different values. Any
method for the superclass soldier may, by deferral (see above), make
reference to the variable pointWeapon, and the appropriate value will
be picked up if the instance actually handling this message belongs
to the blueSoldier or redSoldier "dummy" subclasses.

Finally, it is very important to note that Smalltalk-80 includes, in
the basic package, a large number of artifacts designed to support
discrete-event simulation; there is a class SimulationObject, which
includes messages such as (the titles are suggestive):

134

1. startUp
2. tasks
3. :finishUp
4. holdFor
5. scheduleArrivalO:f:
6. scheduleArrivalO:f:
7. resume
8. acquire
9. release
10. produce

Existing Object-Oriented Languages

at:
after:

The last four messages relate to resource class objects, of which
there are two variants: static, which corresponds more or less to the
SIMSCRIPT II.5 resources, and coordinated, which allows the resource
object itself to have intelligence with which to implement, for
example, preemption.

B.2 SIMULA

Unlike Small talk, SIMULA is not a closed implementation; rather, it
is an extension of the Algol-60 language and subsumes Algol-60 with a
few intended exceptions. SIMULA is a rich compiled-only language; it
has been implemented on a number of systems [Birtwistle 1984a].
Indubitably, it would have received more attention and usage in the
U.S. were it not for its extremely poor documentation, lack of
readable textbooks and a worldview best summed up as "inordinately
complex" [Bratley 1983]. The following analysis is based on a study
of reference [Birtwistle 1973].

From Algol, SIMULA inherits its dynamic calling mechanism, which
enables the writing of recursive procedures, as well as its powerful
structure and character manipulation primitives, which are enhanced
in SIMULA as well. Object-oriented programming is achieved by means
of an object-mode variable, similar to the kind proposed for LCS.
Nominally, SIMULA object variables are explicitly typed, as in the
following declarations (SIMULA reserved words are typically
underlined by the SIMULA compiler in the compilaton listings):

REF(POINT)P1,P2,P3

indicating that P1, P2 and P3 are object variables that can only
reference an object of class POINT. Since all object mode variables
must be thus qualified, it would seem that all the type-sensitive
questions could be resolved at compile-time and that there is no need
for run-time knowledge of the type of current value object of an
object variable.

135

Object-Oriented Distributed Simulation

However, SIMULA allows an object variable to contain an object of a
superclass of the class that is nominally declared for that variable.
For example, if CENTRE is a superclass of POINT, then Pl can have a
CENTRE-class object as its value. There are also facilities to
determine the object type of the value of a variable, both shallow
(IS) and deep (IN), and a case-dispatch construct for dispatching on
object type (INSPECT). Clearly, this requires run-time knowledge of
the object type of the value of object variables.

Attribute and behavior inheritance is strictly tree-structured. Any
class has a single parent class which is stated in the class
declaration by means of a prefix:

LOCATION CLASS AIRCRAFT(CARRIER,FLIGHTNO);INTEGER FLIGHTNO;
REF (AIRPLANE) CARRIER;

BEGIN REF(LOCATIO) ORIGIN,DESTINATION;
REAL FLIGHTTIME;
---- PROCEDURE FLY ••••••.•

END***FLY***;
PROCEDURE LAND •••••••

END***LAND***
ORIGIN:-CARIER.MAINBASE;
DESTINATION;-CARRIER.DESTINATION(FLIGHTNO);
FLIGHTTIME:=ORIGIN.GCDISTANCE(DESTINATION)/
FLIGHTSPEED;
END***AIRCRAFT***;

In the previous example, AIRCRAFT is a subclass of LOCATION, and thus
it inherits LOCATION 1 s a ttri bu tes and methods. Note that some of
AIRCRAFT 1 s own attributes can appear as "parameters" of the class
name. This allows these attributes to be initialized by the
statement that constructs the object. For instance, a new aircraft
will be created by:

NEWAC :-~ AIRCRAFT(TW,611);

Note also that the methods are specified as procedures within the
lexical scoping of the block declaring the class and that the
"maincode" (corresponding to the SIMSCRIPT process procedure) is
specified as the "body" of the class block.

The above example also illustrates that period (11
•

11
) within object

attributes has a different meaning than in SIMSCRIPT. In the former
case, it serves as an abitrary identifier character, while in SIMULA,
the period represents (as in Pascal and C) a binary dereferencing
operator. A composite name separated by a period, such as
CARRIER.MAINBASE, represents accessing the MAINBASE attribute of the
CARRIER object.

136

Existing Object-Oriented Languages

Of more interest is the way in which methods are invoked -- that is,
the way messages are passed. They look like function calls qualified
by the object variable that will receive the message and thus look
very similar to attribute access. The ORIGIN.CGDISTANCE(DESTINATION)
statement sends the CGDISTANCE method to the object, which is the
value of ORIGIN, with the value of DESTINATION as a parameter.

The SIMULA documentation does not use the Actor paradigm to explain
message passing; rather, they favor the analogy to function calling,
which is emphasized by the block structure of the class and method
definition syntax. It is possible to chain messages at the source
code level if the value they return is an object such as

VALUE := OBJl.MESSAGEl.MESSAGE2(PARAMETER);

which sends MESSAGE2 to the object returned by MESSAGE! when sent to
OBJl.

Note also the use of the symbol :- to assign object values to object
variables, in contrast to the Algol := symbol used for numerical and
text variables; similarly, SIMULA uses == and =/= for the boolean
tests for object equality and inequality, respectively, while = and
... = are used for all other variable modes. This is done to improve
readability, at the expense of increasing the likelyhood of
typographical errors.

Shadowing and deferral are allowed in SIMULA, but they must be
explicitly authorized by the superobject for each attribute and
method to be shadowed. To authorize shadowing, the attribute, or
method, must include the keyword VIRTUAL in that object, even if it
has a null body.

It is possible to have a simple form of before- and after-method,
limited to the maincode (i.e. the init method). When an object is
instantiated, the maincode of the highest (most primitive) component
class is executed first, then the next one down, and so on until the
current class is reached. However, if the keyword INNER is included
as a "statement" in a class's maincode, its execution is interrupted,
and the successor class's maincodes are executed before going on with
the next statement. A method may use the pseudo-variable THIS to
refer to the current instantiation of the object, while NONE is used
as the null object.

B.3 C++

A very recent development has been C++, which is similar to SIMULA in
two important ways. First, like SIMULA, the object-oriented features
are an extension to an existing algorithmic language. Second, as its
author acknowledges, those features are largely derived from those of
SIMULA67.

137

Object-Oriented Distributed Simulation

With a few minor exceptions, C++ is a superset of the C language, an
extremely compact language designed for portable implementation of
systems software, including the UNIX operating system. C++ is
implemented as a pre-processor to the standard C compiler included
with AT&T' s UNIX systems. The language has been developed at AT&T
Bell Laboratories by Bjarne Stroustrup since the early 1980s.
Various incarnations have been distributed within AT&T since then.
More recently, the package has been made available to universities.

According to its author,

C++ classes distinguish themselves by combining
facilities for creating class hierarchies with
efficient implementation. The facilities for object
creation and initialization are notable. The
facilities for overloading assignment and argument
passing are unique for C++ [Stroustrup 1984a].

Stroustrup contrasts C++ classes to Smalltalk by noting "while a C++
base class provides a fixed type-checked interface to a set of
derived classes, a Small talk superclass provides a minimal untyped
set of facilities that can be arbitrarily modified ... all functions
are virtual and all type checking done at run time."

As proposed for LCS, C++ takes two approaches for involving object
manipulation methods, in which the corresponding method is selected
at compile or run-time.

If func is invoked for object with parameter parm, this is expressed
in C++ in a manner similar to SIMULA67, e.g.

object.func(parm)

If the function is strongly typed, only one possible class of object
can be passed. This translates to the standard C notation

function(&object,parm)

where the ampersand represents C's "take the address of" operator.

Behavior inheritance is implemented through virtual functions. For
example, the function move could be defined for the class vehicle.
The declaration

138

Existing Object-Oriented Languages

extern static location home; /*global and unscoped*/

class moving object
{ location position

float maxspeed;
float speed;
float heading;

public:

} ;

void
{speed

virtual
void

floor it{}
= maxspeed; }
void move(location);
go_home();

defines a class of objects (moving object) for which the function
move is defined to exist, but it is a virtual function, for which the
definition of the function behavior is deferred to a subclass. A new
subclass, vehicle, can be built upon the framework of a moving object
as follows: -

class vehicle:public moving object
float gross_veh_weight;

public:
void move(location);

} ;

A sequence

vehicle car;

car.floor_it();

would cause the floor it subroutine for the class moving object to be
called for car, since a separate behavior was not defined for the
vehicle derived type; this routine is referred to as
moving_object::floor_it().

However, the sequence

location destination . . .
car.move(destination);

would cause the routine vehicle::move() to be invoked for the object
car.

139

Object-Oriented Distributed Simulation

A different set of declarations could be used to define a move
function for another subclass of moving object, such as airplane or
person. Then, the moving_object function could be defined

void go home()
{ this.move(home);

}

where this is the same as in SIMULA, and similar to the self of
Smalltalk or Flavors. The following sequence of code would do
exactly as expected:

vehicle
airplane
person

car;
jet;
boss;

if (time==done time)
{ car.go home();

jet.go-home();
boss.go_home();

Even though the function go home is defined for all subclasses of
moving object, it must dispatch the move behavior at run-time based
on the- object subclass for this. This dispatching is done via a
table look-up of a subroutine address during execution of the
statement this.move(home).

As with SIMULA67, the hierarchy of classes and inheritance is
strictly tree-structured. A C++ class must be derived from a single
class; the multiple inheritance of Flavors is not allowed.

B.4 Object Pascal

Object Pascal represents a recent collaboration between Niklaus
Wirth, the original author of Pascal, and the team at Apple Computer
that developed Clascal for the latter's Lisa microcomputer. The
authors of report [Tesler 1985a] explicitly place the specifications
of the new language in the public domain, and encourage others to
develop compilers implementing those specifications.

The Clascal language, described in [Keohan 1984], has been taught by
Apple instructors for the past two years. Object Pascal is intended
to correct the problems found in using and teaching the earlier
language. In fact, one of the primary goals of the Object Pascal has
been ease of learning, and this was a factor in the deliberate
decision to exclude multiple inheritance. 2

140

Existing Object-Oriented Languages

Despite the independent research efforts involved, Object Pascal is
in many ways reminiscent of C++. Both are fully-compiled languages,
extend existing structured languages are based on the class concepts
of SIMULA.

Both mimick SIMULA's object.method(arguments) syntax for message
passing, use the virtual keyword for deferral of method
implementation to a subclass, and allow omission of self in a method
routine, with the assumption that methods refer to self unless
otherwise noted. As noted in [Tesler 1985b], this change from
Clascal makes it easier to convert conventional Pascal code written
with global variables and procedures.

According to Apple's announced plans, the major use for Object Pascal
will be in supporting libraries of inherited behaviors for developing
Macintosh software. Apple can supply a set of standard behaviors to
software developers, and then those behaviors can be selectively
included, enhanced, or replaced as appropriate for the particular
application. This "MacApp" sys tern is also planned to include
development in C and other programming languages.

B.5 Ross

ROSS is an extension of the Lisp language developed at the Rand
Corporation, specifically to allow easy object-oriented coding for
discrete-event simulations. From Lisp, ROSS inherits the immense
power of symbolic manipulaton which makes, for instance, special
object-mode variables -- necessary in SIMULA and in LCS -- totally
superfluous. It is also capable of inheriting the powerful
interactive software environments of some Lisp implementations,
although this depends strongly on the particular Lisp system being
used.

Sadly, it also inherits the basic problem of Lisp: currently
available Von-Neumann type machines are woefully inefficient in
performing the fundamental Lisp operations (for which truly
associative memory hardware would be required, a problem it also
shares with Small talk). Although specialized processors have been
developed to aid in the emulation of this hardware ("Lisp Machines"),
the same amount of money spent on conventional hardware will execute
conventional software at a faster rate (approximately four times as
fast, according to [Elias 1985]). Clearly, Lisp and Small talk are
desirable when lower software development costs are more important
than execution speed.

The following analysis of ROSS is based on references [McArthur
1982].

141

Object-Oriented Distributed Simulation

ROSS appears to the programmer as a very simple extension of Lisp;
indeed, there is only one new verb, three predefined objects, and 10
"properties" (properties are a generic Lisp facility) associated with
ROSS. ROSS objects appear to be simple Lisp objects; messages are
sent by means of the "tell" Lisp verb (which has the alias "ask").
Method definition, class definition, and instance creation all are
achieved by means of messages, as opposed to language "primitives,"
as in SIMULA or Flavors. A typical message passing would look like:

(tell objectl body-of-message)

In ROSS, there are no object classes; instead, there is a hierarchy
of related objects, where objects inherit the attributes and behavior
from the objects above them in the hierarchy by forwarding the
messages they cannot handle. Since there are no explicit classes,
there is no concept of "instance" as in the other languages described
in this chapter.

A distinction is made between objects that have other objects as sub
objects, and instances that have no sub-objects; the former are
called generic objects in ROSS, and the latter instance objects.
Apart from their location in the tree (nodes or leaves), there is no
qualitative distinction between these two kinds of objects. Indeed,
an object may be created without either the instance or generic
specification (by means of the MAKE message) and given the
appropriate status later.

New object creation is performed by sending an appropriate message
(for example, CREATE) to another object, as in Smalltalk. This
necessitates the preexistence of a fundamental object, called
SOMETHING in ROSS (the other three predefined objects are the
simulation clock and two debugging aids).

The attributes of newly created objects are determined by parameters
of the CREATE message. Thus, a "class" of objects having the same
attribute structure is possible by having the code CREATE all these
objects in the same way. Method sharing, however, is achieved by
means of common parent objects.

Thus, two different mechanisms are used to inherit the state and
functional components of behavior. A true class in the SIMULA and
Smalltalk sense can be created by a combination of these means, but
must be explicitly performed in the code, and there is no explicit
description of such a class in the resulting ROSS code.

142

Existing Object-Oriented Languages

The most advanced characteristic of ROSS, and the one that sets it
apart from the three other languages analyzed here, is its pattern
matching based message dispatching scheme. Rather than the fixed
message names of Smalltalk, SIMULA and the Flavor System, ROSS
triggers methods by means of complex patterns including both fixed
and "variable" elements. This can only be illustrated by defining a
method, which is accomplished by sending a message to an (presumably
GENERIC) object which in question, and includes the keyword WHEN:

(tell objectl when receiving (message-pattern)
.•.. body of method •...)

The message pattern consists of "fixed" items (items that must match
the incoming message literally for a match to be successful), and
"variable" items (items that will match anything, but that will
remember what they matched for the duration of the method). For
example, the pattern:

(press the >thing}

will match any message whose first two tokens are "press" and "the,"
while the third token can be anything at all; however, the variable
"thing" will be bound, in the body of the method, to this third token
(itself a Lisp object, therefore, a potential ROSS object). For
example, if an object is given the following method definition:

(tell generic-object when receiving (press the >thing}
(print thing)

Then if that object -- or one of its descendents -- is sent the
message:

(tell object-instance press the button)

then button will be printed, since thing will be bound to button in
the body of the method when it executes (note that print is a Lisp
primitive; the body of the method may contain any Lisp statement
including, of course, ask).

This pattern-matching mechanism is exceedingly powerful; it allows
messages to be constructed in a way very reminiscent of natural
English (as opposed to the "Englishese" of COBOL and SIMSCRIPT II.5);
at the same time, it imposes an exceedingly heavy run-time
computational burden which cannot be alleviated by smart compilaton
(indeed, powerful pattern-matching approaches demand specialized,
dedicated hardware).

143

Object-Oriented Distributed Simulation

Once the mechanism for dispatching messages has been explained, let
us return to the instance-based inheritance mechanism of ROSS. ROSS
implements attributes dynamically: a new attribute can be added to
an ex i s tin g o b j e c t ins tan c e and an ex i sting at t rib u t e c an be
expurgated from an existing instance. This can be interpreted either
as a very powerful capability or a source of programming problems,
since the structure of a given object can change during runtime.
Clearly this requires the dynamic nature of Lisp system, and cannot
be implemented by "one-time" compilation approaches, such as SIMULA
or SIMSCRIPT.

The effective attributes of a ROSS object are determined in two ways:
the individual object's variables, (which would correspond to
instance variables in a class-based system), are specified in the
message that is sent to create the object; but the object also
"inherits" the instance variables of its parent objects (ROSS allows
multiple parents, like Flavors, and unlike SIMULA, C++ and Object
Pascal.)

When a method references a variable, it is first looked up among the
instance's own instance variables (as defined when it was created);
if not found, the pare(s) instances are searched. In this case, the
variable acts like a Small talk "Class variable, 11 in that is a value
shared by all the members of that class (actually, all the offspring
of the instance that actually contains the value). Implicit in this
scheme is the capability of shadowing; attribute merging, in the
Flavors sense, is, however, impossible. The same mechanism applies
to methods.

ROSS's lack of an explicit class mechanism is a severe obstacle to
its practical application as a production simulation language, second
only to the run-time overhead imposed by Lisp and the pattern
matching message dispatch system.

B.6 The Flavor System

The so-called "Flavor System" is a package written in Lisp to
implement object-oriented programming. Developed originally for the
"Lisp Machine" Lisp [Stallman 1984], it was subsequently ported to
the NIL VAX/VMS implementation of Lisp [Burke 1984]. It has been
used extensively by the authors of [Elias 1985] for air traffic
control simulation; this section is based on that experience.

While an obviously open system, it is interesting to note that the
NIL language itself system was developed entirely in object-oriented
style. An ingenious "bootstrapping" scheme was used, whereby the
" c ore " of N I L was s i m u l ate d in Mac l i s p on a PDP- 2 0 and made to
produce VAX-11 code. It was then transferred in binary form to a
VAX. With this core, the rest of the NIL system, including the
editor, interpreter, and user-level constructs, was developed.

144

Existing Object-Oriented Languages

Thus, while the Flavor system is truly an "add-on" in Lisp Machine
Lisp, it is an intrinsic component and a basic development tool of
the NIL language system. For these reasons, we will describe mainly
the NIL implementation of Flavors, rather than the Lisp Machine one.

Principal features of the Flavor system are:

1. Class-based inheritance is provided unlike the Lisp
based ROSS, but similar to the other object-oriented
languages discussed previously.

2. Flavors supports multiple-path inheritance. The class
structure can be arbitrarily specified and is not limited
to a simple tree structure, as is the case in SIMULA, C++
and Object Pascal. The user is allowed even to specify
apparently cyclic class definitions (such as "class foo
includes class bar which, in turn, includes class foo").
The system actually unravels and "cuts" the cycles at
execution time (it is difficult to differentiate between
"compile time" and "run time" in NIL, since it is capable
of true incremental compilation and linking).

3. A large repertoire of attribute and method combination
alternatives are included: for better or for worse, this is
the consequence of the multiple inheritance capability.
The system is both very powerful and very complex: only
very sophisticated users can take full advantage of its
performance.

4. The Flavor system uses syntactically separate definition of
object classes and methods. While both Small talk and
SIMULA syntactically group the definitions of object
classes and the method functions, the Flavor System (as
with Object Pascal) treats class and method definitions as
separate operations, with the obvious restriction that a
class must have been defined before a method for that class
can be defined. This is required by the interactive,
incremental programming nature of Lisp; a user must be able
to add a new method to an existing class of objects while
running the code.

The Flavors design is capable of reasonable runtime performance on
conventional arc hi tee ture s when coupled with an exceptionally
efficient Lisp implementation, such as NIL. For example, object
oriented programming is used to implement a variant of the Emacs
editor in NIL, and the editor's performance is acceptably fast, even
in a multi-user VAX configuration.

The Flavor System is implemented in NIL using the following four
constructs:

145

Object-Oriented Distributed Simulation

def'f'lavor

def'method

send

make-instance

This verb is given as arguments a list of attribute
name. All variables in NIL are dynamically typed,
so there is no need to declare the type of the
attributes. Arguments also include a list of
component flavors (the superclasses) and various
options controlling the automatic creation of
utility methods, such as attribute accessors and
mutators.

This verb defines a method for a given message and
class, and is other wise identical to a normal Lisp
function definition construct. The pseudovariable
self' is used to reference the currently active
object, and there is no equivalent to Small talks
super pseudovariable.

This verb causes a message to be sent to the object
which is its first argument; the next argument is
the message selector, and the remaining arguments
the parameters that the selected method will
receive. As is customary with Lisp, methods return
a function value.

This verb returns a newly-created instance of the
class specified as the first argument. Parameter
type arguments may be used to specify initial
values for the attributes of the new instance.

One of the most striking features of the Flavor system is the
tremendous flexibility built into it. The options available to the
user in the definition of a flavor allow him to control in great
detail the internal operations of the system itself. Examples of
this are a vast set of options for combining methods and ways to
override just about every aspect of system-defined processing.
Useful as it may be to the sophisticated user, this power may,
however, overwhelm less experienced or skilled users.

146

Existing Object-Oriented Languages

Appendix Notes

1. Personal communication, Adele Goldberg of Xerox Palo Alto
Research Center (PARC), April 8, 1985.

2. Personal communication with Larry Tesler, Apple Computer Inc.,
March 23, 1985.

147

CACI
3344 North Torrey Pines Court, La. Jolla, California 92037 (619) 457-9681

