
 - 1 -

Movement Ideology vs. User Pragmatism in the
Organizational Adoption of Open Source Software

Jason Dedrick

<jdedrick (at) uci.edu>
Center for Research on Information Technologies and Organizations (CRITO)

University of California, Irvine
3200 Berkeley Place, Irvine, CA 92697-4650

+1-949-824-2863; fax: +1-949-824-8091

Joel West
<Joel.West (at) sjsu.edu>

College of Business
San José State University

One Washington Square, San José, CA 95192-0070 USA
+1-408-924-7069; fax: +1-408-924-3555

Chapter 15 in

Kenneth L. Kraemer and Margaret Elliott (Eds.)
Computerization Movements and Technology Diffusion:

From Mainframes to Ubiquitous Computing
Medford, NJ: Information Today, 2007.

Abstract:

The free and open source software (F/OSS) computing movements have argued that F/OSS

projects lead to better software, freedom from vendor control, and social benefits by sharing
software and its associated source code. While these movement grew out of the interests of
programmers to write better software for their own purposes, the open source movement has
focused on gaining widespread adoption of F/OSS by businesses and other organizations. This
requires acceptance by IT organizations and professionals, whose views of F/OSS have been
largely ignored in prior research. We interviewed twenty one IT professionals in fourteen
business and public sector organizations to uncover their views on F/OSS and the extent of
adoption by their organizations. We find that most users do not value access to source code, and
very few have ever modified source code even when they use open source software. Users are
much more interested in the low cost of F/OSS, which the movement downplays, and there is no
consensus about the relative quality of open source versus closed source software. The main
point of agreement is on the importance of control and choice, and the freedom from vendor lock-
in, that comes with F/OSS. Finally, we find that users are generally agnostic about the ideologies
of the F/OSS movement, but that in some cases movement advocates act to encourage adoption
within their organizations.

Revised as of May 26, 2006

 - 2 -

1. Introduction

The emergence and adoption of new technologies can lead to important social changes.

While social change may occur as an unintended by-product of technological change, advocates

of new technologies often have promoted them as instruments of positive social change. One

example is computer technology, which has been championed by so-called “computerization

movements” (CMs) (Kling and Iacono, 1988).

A CM is defined as “a kind of movement whose advocates focus on computer-based systems

as instruments to bring about a new social order.” (Kling and Iacono, 1988: 227). Members of

CMs advocate the adoption of specific computing uses and arrangements such as artificial

intelligence, office automation, computer-based education, personal computing, and

internetworking (Kling and Iacono, 1988; Iacono and Kling, 2001).

Two computerization movements that have gained considerable attention in the past decade

are the Free Software and Open Source Software movements, jointly denoted by the acronym

F/OSS. These overlapping (but distinct) movements use a combination of mobilizing rhetoric as

part of their public discourse. Some are framed in ideological terms of social transformation,

allowing developers to study, improve and redistribute software freely for the good of the

broader community (Stallman, 2002). The movements also employ more utilitarian frames,

claiming that F/OSS is a superior approach to software development that produces higher quality

code much faster than commercial software projects (Raymond, 2001).

These two movements also have other distinguishing characteristics. Unlike other CMs, the

F/OSS movements do not promote computerization, but rather a change in the economic

relationship of a computer technology to its producers and users. A major goal of the movements

is to recruit more F/OSS developers and users (cf. Elliott and Scacchi, forthcoming). These

movements are also the latest stage of a broader Open Software movement that extends back to

1969 with the creation of the Unix operating system.

Finally, these movements require cooperation between two distinct groups — F/OSS

developers and adopters. So far, there has been considerable research on the organization and

motivation on F/OSS developers (Lerner and Tirole, 2002; Markus, et al., 2000), but little on the

motivations of current or potential users.

In our study, we ask the following research questions:

 - 3 -

• What are the ideology, beliefs and motivations of F/OSS movements?

• Are these beliefs shared by potential organizational adopters of F/OSS?

• What role do members of the F/OSS movements have as change agents in getting IT

organizations to adopt Free or Open Source software?

We first briefly review the history of the F/OSS and earlier movements. We then describe the

results of an empirical field study of professional IT managers and their attitudes towards F/OSS

adoption. From this, we draw conclusions about the degree to which adopters of F/OSS

technology are influenced by the dominant frames and utopian visions of the two F/OSS

movements.

2. Three Decades of Open Software Movements

West & Dedrick (2001) show how during the 1990s, the technology and business strategies

of the Free Software and Open Source movements grew directly out of the Unix ecosystem of

the 1970s and 1980s, leveraging both its technical design and associated supply of

complementary assets. The Free Software movement drew directly from the desires of Richard

Stallman and Linus Torvalds to make a free copy of Unix, while key leaders of the Open Source

movement previously worked to release distribute their existing (BSD) Unix.

At the same time, there are important differences in the action frames of the two F/OSS

movements, which Stallman (2002) terms “two political camps.” 1 There were also similar

divisions within the earlier Unix movement, particularly with regards to motivating and

organizing innovation. As such, the Unix (Open Systems), Free Software and Open Source

movements represent three distinct but related efforts within a larger movement we collectively

label the “Open Software” movements (Table 15.1).

Unix: Academic Research and Open Systems

The F/OSS movements are a direct outgrowth of the development of the Unix operating

system, and its associated movement. The Unix movement provided standards and skills

essential for later F/OSS developers, widely dispersed source code under F/OSS licenses and

1 With regards to IP strategies, the term “Open Source” is a proper superset of “Free Software,” and the

respondents in our study treated it as such. Because of the differences in movement goals, in this paper we use
“F/OSS” to refer to these two movements. European members of the Free Software movement often include
“Libre” in the acronym (“FL/OSS”), but we have not found an example where “libre” is not synonymous with
“free software” as defined by Stallman (1999: 56).

 - 4 -

originated some of the same goals (notably reduced vendor control) that later became pillars of

the F/OSS movement.

Beginning in 1969, the Unix operating system was developed by AT&T computer science

researchers for use by themselves and their peers. AT&T was forbidden from being in the

computer business, so the research project was licensed (in source code form) to users

throughout the world. With the source available, sophisticated users made their own changes: by

1976 users had begun to circulate bug fixes and other improvements, some of which were

eventually included by AT&T in subsequent releases (Salus, 1994).

Despite the restrictions on its distribution, Unix gained a loyal following for two reasons.

First, in making good tools for their own software development, the AT&T researchers created a

system that appealed to a wide range of computer scientists. Secondly, almost from the

beginning the operating system was designed for portability between hardware systems, the only

major operating system to provide such flexibility.

From this, there were two major submovements which diffused Unix to non-AT&T users

during the 1980s and 1990s. First, led by U.C. Berkeley, Unix became a major basis for

computer science research in the U.S. and elsewhere. Second, the portable operating system

fueled the vendor-independence goals of the Open Systems movement.

BSD-related Academic Research. Of all the research and other improvements to Unix outside

AT&T, the largest proportion came from the Computer Science Research Group at the

University of California at Berkeley. University programmers began to develop their own

supplemental code for Unix, shipping the first Berkeley System Distribution (BSD) in 1977.

From 1980-1994, the Berkeley researchers shipped their own BSD enhanced Unix distribution

with source code to sites with a valid AT&T Unix license (Salus, 1994, West & Dedrick, 2001).

But the requirement to hold an AT&T license limited the adoption of BSD, particularly by

individuals and smaller businesses. In 1990, Berkeley staffer Keith Bostic began soliciting

volunteers via the APRAnet to re-implement the AT&T code.2 In 1994 Berkeley released

4.4BSD-Lite, the first Unix implementation not encumbered by an AT&T license. This code

formed the basis of the NetBSD and FreeBSD open source projects, which were soon available

2 One of the rewritten packages that Bostic solicited was a lightweight database that became known as

BerkeleyDB. In 1996, to support and eventually commercialize this software Bostic co-founded the open source
company Sleepycat Software (interview, Feb. 4, 2005)

 - 5 -

under the BSD license for free download on the Internet (Morin, 1995; McKusick, 1999; West &

Dedrick, 2001).

At MIT, researchers used the BSD operating system as the basis for developing a graphical

user interface. The result was X11, which was released in source code form and became the basis

of nearly all subsequent Unix (and Linux) graphical interfaces. The project was largely funded

by cash, equipment and developers donated by Digital Equipment Corporation and IBM.

Open Systems. The Open Systems movement was driven by a desire of users to reduce IT

vendor power associated with control over de facto standards and high switching costs. It was

supported by IT vendors that had been unsuccessful in establishing their own proprietary de facto

standards. To allow buyers to easily switch between or integrate systems from competing

vendors, the movement pushed for open standards, notably for application software (both

internally developed and third party) and computer networking. But unlike the academic

research, the openness was manifested by open standards, with software still developed and

distributed as proprietary implementations (Gabel 1987; Grindley, 1995; West, 2003).

An early linchpin of the movement was abstracting the range of Unix implementations to

create a formal compatibility standard to increase application portability between operating

systems. Beginning in 1984, the IEEE sponsored the POSIX (Portable Operating System

Interface) standardization effort (Isaak, 2006).

Other key technologies of the Open Systems movement were based directly on the earlier

academic research, including the TCP/IP network code developed for BSD Unix. BSD’s most

visible leader, Bill Joy, left Berkeley in 1982 to co-found Sun Microsystems, the first large IT

vendor to fully committed to an Open Systems strategy (Garud and Kumaraswamy 1993). Sun

later played a major role in promulgating Unix adoption and shaping Unix standards. However,

rival standards from competing vendor factions limited portability and reduced user adoption

(Grindley, 1995).

To summarize, key characteristics of the Unix-related movements included:

• Programmers writing software for their own needs, i.e. for others like them;

• User access to source code, which allowed quick error correction and customization;

• Free (price) distributions (under BSD and MIT licenses) of software developed for

research projects;

• Direct vendor sponsorship (as at MIT) of public software research;

 - 6 -

• Efforts by users to increase control of IT infrastructure and reduce IT vendor power,

by reducing the vendor lock-in created through switching costs.

 “Free Software”

Of the related Open Software movements, the Free Software movement is the most overtly

ideological, with its utopian view of a new cooperative economic relationship between software

developers, users and their shared code. As founder Richard Stallman explained:

Every decision a person makes stems from the person’s values and goals.

People can have many different goals and values; fame, profit, love, survival, fun,

and freedom, are just some of the goals that a good person might have. When the

goal is to help others as well as oneself, we call that idealism.

My work on free software is motivated by an idealistic goal: spreading freedom

and cooperation. I want to encourage free software to spread , replacing proprietary

software that forbids cooperation, and thus make our society better. (Stallman,

2002, Ch. 15)

Today Stallman’s story is widely known — of how he worked as a programmer at MIT,

found it increasingly frustrating to be unable to modify (or share modifications of) proprietary

software, of how he eventually quit in 1984 to start Project GNU (cf. Stallman, 1999, 2002). The

next year he founded the Free Software Foundation, a non-profit corporation to support his

nascent “Free Software” movement. By his own telling, Stallman’s ethos was formed by his

early career developing academic software:

Whenever people from another university or company wanted to port and use a

program, we gladly let them. If you saw someone using an unfamiliar and

interesting program, you could always ask to see the source code, so that you could

read it, change it, or cannibalize parts of it to make a new program (Stallman, 1999:

53).

From this he began his campaign for “software freedom”, to have “free software” supplant

all proprietary software:

“Free software” is a matter of liberty, not price. To understand the concept, you

should think of “free” as in “free speech,” not as in “free beer.” Free software is a

 - 7 -

matter of the users’ freedom to run, copy, distribute, study, change and improve the

software (Free Software Foundation, 2005).

To define “free software”, Stallman derived four levels of “software freedom,” oriented

towards the needs of fellow programmers (Table 15.2). As a practical matter, that meant that

Stallman and his FSF allies judged software licenses and business models to indicate which ones

conformed to the norms of the movement. The software freedom principles were codified in the

GNU General Public License, which imposes a doctrine of compulsory sharing (also known as

“copyleft”) in exchange for free use and modification rights for the source code (Rosen, 2004;

West, 2005).

The goals of Project GNU were to create an entire Free Software operating system, which

from its earliest days was conceived as an unlicensed Unix clone. The project began by making

line-oriented software development tools for other programmers, including the emacs text editor

and the gcc compiler.

In 1991, college student Linus Torvalds also wanted a Unix that was cheap to run on his own

PC. After being dissatisfied with Minix, he started to write his own, using both Minix and prior

Unix standards to write something that would run existing Unix applications. He based the

operating system on the GNU tools and after a year licensed Linux under the GPL (Moody,

2001: 31-50). By the time Torvalds was on the cover of Forbes magazine (August 1998), Linux

had become the success story of the Free Software movement. The success of Project GNU and

particularly Linux created visibility for GPL among sympathetic programmers. Thus, as of

February 2005, 66.3% of the projects on SourceForge.net used the GPL, while the second

popular license was the library version of the GPL with 10.7%.

The focus by Stallman and allies on the ideology and purity of the Free Software movement

brought both attention and controversy. Like other movements, it sought to redefine language to

advance its cause — as when Stallman declared war on terms such as “intellectual property” and

“Linux”. But Stallman’s efforts to rebrand the Torvalds effort as “GNU/Linux” stirred animosity

between the two men (as captured by Moore, 2002). More fundamentally, Torvalds explicitly

rejected the Free Software ideology; in one famous exchange, he told a critic “Quite frankly, I

don't want people using Linux for ideological reasons. I think ideology sucks.” (KernelTrap.org,

2002). Thus, in 1998 key Linux supporters began a new movement, one driven by practical

rather than ideological goals.

 - 8 -

 “Open Source” Software

In January 1998, Netscape announced it would release on the Internet the source code to its

web browser. In response, in February a group of Linux advocates met in Silicon Valley to

strategize ways to promote the adoption of Netscape, Linux and other similar technologies by

mainstream businesses (Raymond 1999). They saw the mobilizing rhetoric of the “free software”

movement as a major obstacle:

 [W]e have a problem with the term “free software”, itself, not the concept….

The problem with it is twofold. First, it’s confusing; the term “free” is very

ambiguous (something the Free Software Foundation’s propaganda has to wrestle

with constantly). Does “free” mean “no money charged?” or does it mean “free to

be modified by anyone”, or something else?

Second, the term makes a lot of corporate types nervous. While this does not

intrinsically bother me in the least, we now have a pragmatic interest in converting

these people rather than thumbing our noses at them. There’s now a chance we can

make serious gains in the mainstream business world without compromising our

ideals and commitment to technical excellence — so it’s time to reposition. We

need a new and better label. (Raymond 1998).

They proposed the term “open source” to describe their new business-friendly movement,

which was immediately endorsed by Linus Torvalds. Later that year, they created a non-profit

organization, the Open Source Initiative. They also established a set of principles, and began to

certify licenses that conformed to these principles (Raymond, 1999). The initial licenses fell into

two groups: the academic research licenses (BSD, MIT) and licenses of the Free Software

movement such as the GPL and LGPL (Rosen, 2004).

While some of the initial participants shared Stallman’s beliefs, the hallmark of the Open

Source movement was its pragmatism.3 Raymond (1999) outlines key tactics that continue to be

used today, including building on the success of Linux, marketing to top corporate decision-

makers, focusing on the Fortune 500 and mainstream business press. The plan also included

3 Some would argue that the decisions were driven by self-interest: many of the initial participants were already
working for businesses that made money from Linux, and in 1999 Raymond himself would become a director
of one of these firms, VA Linux. But in our ongoing research, we have observed both ideology and self interest
motivating leaders of both F/OSS movements.

 - 9 -

using the Open Source Definition and OSI certification of licenses to control the boundaries of

the Open Source movement (Scacchi, this volume). Today, this OSI certification defines IP

policies that are acceptable within the F/OSS movement, although the Free Software Foundation

maintains its own list of approved licenses.

Such pragmatism was vociferously rejected by Stallman as undercutting the moral and

ethical foundation of his Free Software movement:

The main argument for the term “open source software” is that “free software”

makes some people uneasy. … [Some developers] figured that by keeping quiet

about ethics and freedom, and talking only about the immediate practical benefits of

certain free software, they might be able to “sell” the software more effectively to

certain users, especially business. The term “open source” is offered as a way of

doing more of this — a way to be “more acceptable to business.” The views and

values of the Open Source movement stem from this decision.

This approach has proved effective, in its own terms. Today many people are

switching to free software for purely practical reasons. … Sooner or later these

users will be invited to switch back to proprietary software for some practical

advantage. Countless companies seek to offer such temptation, and why would

users decline? Only if they have learned to value the freedom free software gives

them, for its own sake. It is up to us to spread this idea — and in order to do that,

we have to talk about freedom (Stallman, 2002)

Comparison of the Open Software Movements

The founding of the Free Software and Open Source movements can be traced directly to the

Unix expertise of their respective founders. Both Stallman and Torvalds began their development

to make a Unix-compatible OS that fit their requirements. The creators of the Open Source

Initative and Apache project all came from a Unix, BSD or Linux background (DiBona et al,

1999; Moore, 2002).

Thus, it is not surprising that many of the successes and guiding principles of the F/OSS

movements built directly upon prior successes in the Unix movement. Above all, these

movements value free access to source code, which began with AT&T’s (paid) licenses for Unix

source code. This was cemented by Berkeley’s campaign to make source code available to the

 - 10 -

public at no charge, forming the nucleus of open source projects such as FreeBSD. Among

technical users in the Open Standards movement, access to source code was highly valued for the

flexibility and control they provide. The same source code also reduces vendor lock-in, which

during the Open Systems movement was achieved through open standards. And the free source

(of BSD, Linux and other F/OSS projects) was enthusiastically sought by students, hobbyists and

other individual users (Moore, 2002)

But there is more to the F/OSS movements than IP policies. As West & O’Mahony (2005)

note, F/OSS projects are defined not only by an IP policy but a virtually dispersed development

methodology and a community governance model. As a development approach, the two F/OSS

movements are indistinguishable. They share the same development tools and even websites

such as SourceForge.net. The two movements also share with the earlier BSD movement a

technical ethos and pride in technical achievement, in part because many of the authors were

writing software for their own use and for approval and adoption by their peers. Often cited is the

comment (attributed to Eric Raymond) that open source software is based upon programmers

“scratching an itch,” but that observation also describes a tradition of programmers building

products for themselves and their peers dating back to Ritchie and Thompson’s first Unix efforts

in 1969.4

In many cases, F/OSS packages have succeeded based on good design and implementations

by these motivated and knowledgeable developers. For example, both Linux and BSD offered a

low-cost Unix implementation for students; Apache filled a key gap in the web server market

(West & Dedrick, 2001; Kogut & Metiu, 2001). One key aspect of good design is a modular

architecture, which was a major design goal of the Unix operating system (Salus, 1994: 53).

Such a modular technical design (adopted by BSD, Linux, Apache and other F/OSS projects)

later proved to be an essential prerequisite to decentralized F/OSS development (Baldwin &

Clark, 2000, 2003; Kogut & Metiu, 2001). Early proof of this came when the BSD group

attracted volunteers to re-implement the Unix operating system (one module at a time), based on

only the published interfaces (McKusick, 1999).

4 The exact phrase “Every good work of software starts by scratching a developer's personal itch” is found in

Raymond’s oft-quoted essay, The Cathedral and the Bazaar (e.g. Raymond, 1997; Raymond, 2001: 32).
However, a 1994 history of Unix attributes to Berkeley programmer (and sendmail creator) Eric Allman the
observation “One general rule of software design is that you should be writing a program that you want to use”
(Salus, 1994: 145).

 - 11 -

Open Source advocates argue F/OSS inherently has higher quality due to its collaborative

development approach (Ekbia and Gasser, this volume). The most often cited claim again comes

from Raymond (1997), who wrote “Given enough eyeballs, all bugs are shallow.” Other

potential technical benefits of F/OSS development include feature improvements through user

innovation (Franke and von Hippel, 2003), and enabling high quality peer-to-peer support

(Lakhani & von Hippel, 2003).

However, there are important differences between the two F/OSS movements. The Open

Source movement celebrates the freedom of firms or individuals to create new proprietary or

F/OSS projects from Open Source software; the Free Software movement forbids the former and

decries the latter as wasteful “forking.”

Other differences come with the rights and responsibilities of IT vendors in their respective

communities. IT vendors are willing to invest in developing shared F/OSS for commodity

technology that provides little opportunity for differentiation (West and Gallagher, 2006).

Projects like Apache, Mozilla, and Linux (through the Open Source Development Labs) depend

heavily on cash and donated labor provided by major IT vendors promoting their own economic

interests (such as selling Linux workstations); their respective leaders are pillars of the Open

Source movement but have only weak ties to the Free Software movement. Most notably, Linux

uses a Free Software license and builds upon many tools developed by Stallman’s Project GNU,

but is managed by Torvalds and others at OSDL that clearly prefer the ideology (and branding)

of the Open Source movement.

Some of the OSDL sponsors also sponsored earlier academic research, such as IBM and

DEC (now HP) sponsoring MIT’s X11 development. But otherwise, corporate sponsorship

makes the Open Source movement seem more like the Open Systems movement than the

BSD/MIT efforts from which it gained valuable technology and IP principles. This cultural

divide within the Open Software movements — between engineering and business goals — is

illustrated by their respective artifacts. The BSD project of the 1980s and Stallman’s Project

GNU of the 1990s used fanciful animals and T-shirts to appeal to engineers. Meanwhile, the

Open Systems and Open Source industries were organized around trade journals and trade shows

that provided opportunities for IT vendors to promote their respective wares to potential

adopters.

 - 12 -

The goal of the Open Source movement in particular was to promote widespread adoption,

by consciously attempting to speak the language of potential adopters in business and other

organizations. The question we address is how well the movement succeeded in matching its

rhetoric to the interests of users, and to what extent the movement’s rhetoric and mobilization

efforts influence the adoption decisions of potential users.

3. Research Design

We gathered data on organizational adoption of Free and Open Source Software. In

designing our study, we identified differences between F/OSS and proprietary software that were

likely to be relevant to users. First, adopters have access to the source code due to the nature of

the F/OSS licenses, and thus can view and modify the code to meet their own needs. At the same

time, access to source code and the availability of free distributions of F/OSS on the Internet

makes it difficult for vendors to charge high prices for commercial distributions.

Second, the F/OSS is produced by a loosely affiliated virtual community of software

developers, both inside firms and outside them. While support services may be sold by third

parties, such software lacks the single point of responsibility provided by a package from a major

proprietary vendor, potentially increasing the perceived risk of adoption. Thus, when technology

adopters compare an open source package to a proprietary one, they are likely to see a very

different bundle of costs and benefits, as we found in our field study.

Studying Adoption Motivations

We chose to focus on organizational adoption of the best known F/OSS package, the Linux

operating system. We focused on its most popular configuration, the Linux on Intel (aka

“Lintel”) server platform standard, as it competes with Windows, Unix and other proprietary

operating systems.5

There were two reasons for this decision. First, IT managers enjoyed a wide range of server

alternatives. Unlike on the desktop — where one platform has held more than 90% share since

1997, for servers there were three major categories — Unix servers using proprietary RISC-

based processors, servers based on Microsoft Windows and commodity Intel-compatible

5 “Unix” and “Open Systems” are often used interchangeably, but we adopt the classification scheme of West

(2003), in which proprietary Unix-based RISC systems reflect an intermediate point between fully open and
fully proprietary systems.

 - 13 -

commodity hardware (“Wintel”), and those using Linux (or BSD) using the same commodity

hardware.

The server market was also attractive because Lintel server adoption is one of the greatest

successes of the F/OSS movements, as measured both by market share and public notice. In

1999, the number of Linux servers passed the number of Unix servers (West & Dedrick 2001)

From 1999 to 2002, IDC estimated that annual shipments of new Linux servers increased from

173,000 to 598,000, while revenue from their sales increased from $749 million to $2 billion

(Shankland, 2003). Coming in direct competition with Microsoft, Sun, IBM and HP, this success

has captured a good deal of attention in both the trade and business press.

At the same time, from our respondents we sought to place the Linux attitudes into a broader

context of Open Source attitudes and adoption. As such, we gathered data about additional Open

Source server software, of which the Apache web server was the most frequently mentioned.

Data Collection

We used a comparative case study approach, which allows researchers to capture the

experience and context of actors as they relate to decision-makers (Benbasat et al. 1987). We

conducted a series of in-depth interviews (mostly in person) with U.S. firms and government

agencies from November 2002 through October 2004 (Table 15.3). The semistructured

interviews were guided by a common protocol, and typically lasted from 45 to 90 minutes.

Where possible, we talked with both the CIO (or other senior MIS executive) and an operational

staffer such as a system administrator. We hoped that by doing so we could develop a more

complete picture, incorporating the view of both top management and those “in the trenches.”

Also, we could provide a degree of data triangulation (Benbasat, et al, 1987) by comparing the

responses of the two interviewees for consistency.

From this data, we used established procedures for generating theory from qualitative data

(Glaser and Strauss, 1967; Eisenhardt, 1989; Dubé and Paré, 2003). As recommended by Glaser

and Strauss (1967) and Benbasat et al. (1987), site selection and protocol evolved over time. An

initial set of interviews was conducted in four organizations chosen on dimensions of theoretical

relevance, particularly size and industry. These interviews were transcribed and coded to look for

patterns among responses, and a preliminary set of findings was developed. We then continued

to refine the protocol with questions to pursue those findings further and to add organizations to

 - 14 -

the sample to capture additional categories such as technological sophistication and additional

industries.

Data analysis was flexible and opportunistic (Benbasat, et al. 1987; Eisenhardt, 1989); it

included coding interview notes, developing visual displays of the data on white boards, and

counting the number of interviewees who mentioned a particular point. Interviews were also

studied and tapes listened to in order to distinguish the emphasis placed on different factors, and

to find quotes that were especially striking in representing a particular point of view.

4. Users’ Perceptions of F/OSS Benefits

After analyzing the findings from the interviews, we next contrasted their perceptions of

F/OSS benefits with the public discourses of the F/OSS movement activists. In particular we

looked at user perceptions of attributes of F/OSS and potential benefits and costs of adoption.6

These include the importance of access to source code, the importance of cost in motivating

adoption, the importance to users of having control over their destiny, and the perceived quality

of F/OSS when contrasted to proprietary software. Finally, we looked at users’ perceptions of the

movements themselves and the role of the CM advocates as change agents within organizations.

Access to source code

A key ideological tenant of both the Free Software and Open Source movements is that

providing access to source code is critical to enabling users to adapt software to their needs and

to share their improvements with the community. This access is undoubtedly vital for those users

who want or need to modify the code for their own purposes, or who want to fix bugs that they

find. However, our interviews suggest that most IT organizations and professionals are not

interested in doing so. Instead, they simply want to install, run and administer software, and have

no need or sometimes even ability to analyze and modify the code. A typical view expressed by

one interviewee is “Our people are not the type to start tweaking source code or doing their own

bug fixes.”

Perceptions of the utility of access to source code vary from valuable to dangerous. Most

favorable was NatLab, which saw access to source code as vital in its efforts to develop systems

6 Adoption of server software fits the Swanson (1994) definition of a “Type 1” adoption decision, i.e. one that

mainly impacts the IT staff. Because such systems are largely invisible to end-users, in our analysis we treat the
responses of the IT managers as representing the interests of the users’ organization.

 - 15 -

capable of highly sophisticated scientific analysis. Biobranch’s Informatics Director also saw

value, saying, “We knew we had to develop a lot of custom tools, and without having access to

the open source community and to the source code, it would be really difficult.” Biotech’s

Associate Director of IT Infrastructure saw both benefits and risks, saying, “It’s nice to have, but

having source code is like having a gun with bullets. You can shoot yourself in the foot.” By

contrast, for FastFood, such tinkering was something to be avoided completely, “We don’t want

to have anybody mucking with that. We’re trying to use as much off-the-shelf software as

possible.” As a measure of the value of source code, eleven of the fourteen organizations

interviewed were using Linux is some capacity (and another used Apache), yet only four actually

made any use of source code.

The differences in perception might be explained by several factors. First is user experience

and skills. E-Store’s CTO said his company has some of the world’s best Linux kernel engineers,

who are fully comfortable modifying the source code if needed to achieve the performance

required for its high volume e-commerce business. By contrast, BeachCo’s VP of Administration

admitted that he could not even administer a Unix system without having a manual nearby, to

say nothing of actually looking into the source code.

A second factor is the maturity of the software. Several respondents who did use and even

modify source code at times stated that it was not necessary for mature products such as Linux,

Sendmail and Apache. BioBranch’s Informatics Director stated that “In the olden days, I’ve

recompiled the Linux kernel and kind of tuned the kernel. But now I don’t do any modifying at

the kernel level.” Biotech’s Associate Director of IT Infrastructure said that “Linux is more

mature now and doesn’t need modification.”

A third factor is that users do not see value in modifying underlying infrastructure programs

such as Linux and Apache, but are more likely to modify applications that are directly related to

their business and customers. An example is E-store, whose CTO said:

“We do participate with the open source movement, not with the operating

system itself, but with other pieces we use. We modify code for applications

because it’s closer to where our customers are. We’re not an operating systems

company.”

 - 16 -

Open source means lower cost

While both Free Software and Open Source movements have downplayed the importance of

cost as a motivation for F/OSS, for users lower cost is by far the most commonly cited benefit of

F/OSS. Everyone who had adopted F/OSS mentioned cost, and in nearly every case cost was the

main reason for adopting. For instance the CTO of E-Store, which has made extensive use of

Linux and other F/OSS stated his views on open source in a way that quite closely matches

Stallman’s warnings about utility-driven adoption:

“That’s our open source policy: if it’s cheaper, that’s what we do. If some

proprietary vendor comes to us and says here’s a proprietary solution that has lower

cost and higher performance and reliability, then we’ll go and do that.”

The cost calculation of F/OSS versus proprietary software is more complicated than the “free

beer” notion would suggest however. In the case of Linux, a major cost advantage relative to

proprietary Unix systems is due to the fact that Linux runs on cheap Intel-based hardware, rather

than more expensive proprietary hardware from Sun, HP or IBM. This is very important for

organizations that have committed to running some variant of Unix and could do so more

cheaply with Linux, as was the case for ISP, E-Store, BioBranch, NewMedia and Dataco. When

the alternative under consideration was Windows, the hardware issue was not relevant, as

Windows runs on the same hardware platform as Linux. At least some users considered the total

cost of ownership, including licensing, support, and internal staff costs, in their calculations. In

the case of SouthU, this meant that the beer was not free or necessarily even cheap.

“It’s ‘free’ — licensed free, but it’s not free to use. You guys have heard the

saying, “free as in beer”? It’s not free as in beer… You have to have the people

there to maintain it and develop it and foster it and all those things, and that costs

money. And that costs more money than the actual licenses for the software.”

Still, for some users, the lower direct costs paid for F/OSS were a factor. This was true

especially for businesses that have to pay the commercial price for proprietary software, not so

for the universities that enjoy the educational discount. Some, such as ISP, do not even pay the

cost of a commercial Linux distribution, preferring to save money by downloading the free

version.

 - 17 -

Open source means more control and choice for users

Both Free Software and Open Source advocates claim that F/OSS gives users control over

their own destinies, and frees them from the tyranny of commercial software vendors (“don't you

want to be out from under Microsoft's thumb?”)

As one manifesto wrote:

Programming is also about empowerment, what Eric Raymond calls “scratching

an itch.” Most Open Source projects began with frustration: looking for a tool to do

a job and finding none, or finding one that was broken or poorly maintained. Eric

Raymond began fetchmail this way; Larry Wall began Perl this way; Linus

Torvalds began Linux this way. Empowerment, in many ways, is the most

important concept underlying Stallman's motivation for starting the GNU project

(DiBona et al, 1999: 13-14).

This is one issue on which many users agreed with the movement’s rhetoric and valued the

benefit touted by its advocates. Even SouthU, whose CIO had standardized on Windows and was

somewhat uncomfortable about F/OSS in general, adopted the open source Apache and ModPerl

applications to host a custom-developed course management program when faced with a major

price increase from the vendor of a proprietary version of the Perl programming language.

“(The vendor) had originally established an educational price for the support

contract, and they abolished that, which essentially made our contract equal to that

of any commercial enterprise. It would have been hard for us to pay, but in addition,

if (the vendor’s program) fails, (our program) is down and we can’t fix it because

we didn’t write (the vendor’s program).”

A more direct critique of closed source vendors was lodged by the CIO of Biotech. His belief

that standardizing on Windows made organizations vulnerable to “extortion” on the part of

Microsoft had been confirmed in his mind by changes in the vendor’s licensing policies just prior

to the interview.

“Microsoft has done such an excellent job of alienating IT people, with their

new licensing schemes and their really extortionate attempts to keep their margins

up there at historic levels, that everybody’s looking for alternatives. Now

 - 18 -

everyone’s feeling the same way because they’ve been burnt. They’ve seen what

happens when you have a pseudomonopoly situation developing in your company.

You shouldn’t be surprised when your vendor extracts pseudomonopoly rents.”

This view was echoed by NorthU’s Associate Director, who said they had adopted Linux

partly because of concerns over Microsoft’s control. “There was a lot of disenchantment with

Microsoft, the monopoly, and being dictated from Redmond. So we were very interested in

alternatives.”

 Another aspect of the choice/control issue was the concern that a proprietary product

would disappear from the market, because the vendor either disappeared or decided to abandon

that product line. This was expressed by the CIO of SemiCo, who stated, “If the world is moving

to a Linux standard, even over a very long time frame, you don’t want to be on the wrong path

following a proprietary standard.”

Open source means better software and support

Software reliability is key discourse of the Open Source movement, with proponents

claiming that the F/OSS development process inherently leads to more reliable software and

critics claiming it leads to less reliable software (Ekbia and Gasser, this volume). While we do

not empirically measure reliability or other indicators of software quality, we do have strong

evidence of users’ perceptions of quality, and in our sample there is little support for the idea that

F/OSS is necessarily more or less reliable than proprietary software.

Considering Linux in particular, there was a fairly wide range of opinion. Biotech’s

Associate Director of IT Infrastructure felt it was just as good as, or even better than, the

proprietary HP-UX Unix that they also used. FinCo actually tested Linux against Solaris and

AIX on equivalent hardware and said that Linux outperformed the others. Others such as

SemiCo’s CIO were ready to move some applications (such as an SAP module), but not others (a

critical database) to Linux, due to reliability concerns. FastFood was only comfortable using

Linux for print or file servers, not for any enterprise applications. When compared to Windows,

Linux was found by several to be more reliable and secure, but others found Windows to have

the advantage in ease of administration thanks to better tools and user interface.

Only one interviewee, NewMedia’s CTO, felt that F/OSS was inherently inferior, stating “the

quality of the code is crappy — you get what you pay for. It’s all written by college students.”

He did admit that a program such as Apache was “good enough for what it does. A lot of stuff

 - 19 -

that we do on the web isn’t like writing shrink-wrap software, and the level of catastrophic

failure isn’t that catastrophic.”

Even E-store, which is the heaviest Linux user among our respondents, admitted that Linux

still is not as reliable as the proprietary Tru64 Unix system, and suggested the F/OSS model

might be a barrier to reliability. Their CTO stated, “There may be some fundamental issues

around the open source model. Is there an incentive to create software that’s as reliable as the

incentive that an HP would have?”

A contrary opinion was stated by BioBranch, whose Informatics Director felt that the F/OSS

process helped support innovation that benefited his company.

 “As an end user, I couldn’t care less if Linux is open; we’re not going to

modify that. But if it was closed, changes to it would be a lot slower. Other people

are doing advanced things like parallel computing, and if it weren’t open, they

wouldn’t be making the changes we’d like to see.”

While opinions vary about the quality, reliability and speed of innovation in F/OSS, there is

no general perception that the F/OSS model inherently leads to better quality software.

Another issue related to the quality of the software itself is the matter of technical support for

users. IT organizations are accustomed to having support from vendors for the software they use,

either as part of the cost of the software, or as a separate contract. Since there is no vendor for

F/OSS, users must get support either from the F/OSS community via online forums, from

vendors of particular distributions, such as Red Hat or Novell, or from third-party service

companies that offer support contracts. The Open Source movement argues that the community

provides better support than that offered by vendors (whose support teams it considers almost

useless), and says that F/OSS needs less support anyhow. In its response to the “myth” that it is

hard to get reliable support for Open Source software, OSI claims that “business users will

generally find that mature open-source products are far more reliable to begin with, and that

when support is needed it is dramatically cheaper and easier to get than from closed vendors.”

(Open Source Initiative, frequently asked questions)

This view is quite different from that of our user respondents. Most of them were

uncomfortable relying entirely on the community for support, even though several acknowledged

that their experience with the community had been quite positive. For instance, SemiCo’s CIO

said that, “We now have to go through enormous effort to ensure patch compatibility. With

 - 20 -

Linux you get the latest patches every day.” Yet he, along with most others, said that vendor

support was either necessary or would greatly increase their comfort level with adopting F/OSS.

Of particular importance were support for Linux from a Linux distributor, or from a hardware

vendor such as HP or IBM. Most critical was support from application vendors, as no one was

willing to run an application on a Linux server without certification and support from the

application vendor.

In the end, MIS organizations and professionals are quite risk averse, as the easiest way for

them to get noticed by their higher-ups is to have a system fail. In this case, having a support

contract means not only having support, but also someone else to hold accountable for resolving

the problem. As SouthU’s CIO stated,

“I’m nervous about open source. I’m not paying anybody to support it and thus

I’m depending largely on goodwill and luck and skill of my own people affecting

their own solutions and soliciting solutions from other people for free. That

explanation looks amateurish when you offer it to a dean or to a faculty when a

production system is down in my opinion.”

Views on the movement and the role of advocates

Our interviewees expressed a range of views on the F/OSS movement itself. A few were

strong enough advocates to be considered members of the movement. One was the Web Systems

Administrator of NorthU, whose interest in open source began as a student at the same

university.

“When I got my master’s in information management, I was working a lot

alongside people who do research completely on social issues. I was affected by

social impacts of technology coming out of that program. I was concerned about the

proprietary software movement versus the open. If I had to say anything, open

source fits with my personality. I don’t like being subject to the limitations set by

someone else.”

Others identified themselves as advocates, including respondents at Biotech and FinCo. At

the opposite end was the CTO of NewMedia, who claimed he steered clear of hiring “people

with GNU disease” and said that, “I don’t believe that all software should be free, which is the

underlying philosophy of these groups.”

 - 21 -

The prevailing view was pragmatism. Users select the platform or application that best suits

their needs, in terms of price, performance and features. This was summed up by NorthU’s CIO,

who said, “We’re agnostic here. We’re not religious about operating system platforms.”

Members of a computing movement are potential change agents within organizations.

Depending on their position and power, they could do anything from advocating F/OSS to

making organizational policy towards F/OSS. We found that movement believers did attempt to

advocate for F/OSS, but did so within the bounds of institutional restraints. For instance, they

would support F/OSS options when a new application was being developed or a change of

platform was being considered for other reasons, but did not advocate switching existing systems

to F/OSS. Also, arguments for F/OSS were made in terms of cost or performance; no advocate

would argue that the organization should adopt F/OSS because closed source software is “anti-

social” or “tramples on users’ freedoms” as suggested by Richard Stallman.

An example of the role of advocacy was Biotech’s Associate Director, who stated that he

“made sure that we consider Linux whenever an operating decision is made or up for

reconsideration.” This is confirmed by the company’s CIO who pointed to the Associate Director

for Infrastructure as having played a role in Biotech’s increased use of Linux, and suggested we

interview him. A similar role was played by the Web Systems Administrator at NorthU. His

supervisor, the Associate Director, said that “I had to be convinced by (the Web Systems

Administrator) to bring up (a new application) on Linux.” The FinCo advocate said that he and

others had pushed Linux use “under the radar” in pilot projects, and later got Linux accepted as a

standard within the company. This status was further legitimized by the creation of a formal

Linux group within the IS organization.

The role of F/OSS advocates as change agents is clearly constrained by organizational goals

and norms, and by their position within the organization. However, the evidence suggests that

such advocates can have an impact in encouraging adoption by their organizations.

5. Contrasting the Frames of Activists and Beneficiaries

The clearest pattern of our findings was the gap between the dominant frames of the two

F/OSS movements and the actual reasons why organizations adopted Free or Open Source

software.

While some (e.g. Elliott & Kraemer, this volume) argue that such contending discourse will

eventually resolve to a revised dominant frame, we saw little evidence of resolution of such

 - 22 -

differences, either within the F/OSS movements or between the movements and adopters.

Different populations kept to their distinct visions, discourses and technological action frames.

Both Free and OSS developers work side-by-side in creating code and promoting adoption of

that code, while hewing to their respective action frames. The frames of the Free Software

movement work to attract other programmers, but held little appeal for corporate IT decision-

makers, even as they gladly adopted technology such as Linux, gcc and Gnome. Although the

utilitarian framing of Open Source movement anticipated the pragmatic user motivations, even

their public discourse was not completely accepted by the organizational adopters.

What were the similarities and differences between the developer and adopter frames? As

summarized in Table 15.4, we found the following:

• The fundamental objectives of organizational users are utilitarian. Our respondents

were interested in selecting, deploying and supporting cost-effective software that

satisfied key requirements for features and reliability. This is consistent with the tone

of the Open Source movement, which claims it merely wants to promote open source

software “on solid pragmatic grounds rather than ideological tub-thumping.” On the

other hand, the Free Software movement criticizes the Open Source movement for

appealing to “narrowly practical values,” i.e., the very things that matter to users.

• The lynchpin of both movements — full access to software source code — was

surprisingly of mixed value to users, including even some of the more aggressive

F/OSS adopters. Some firms valued having source code — usually for rapidly

evolving business-driven applications, rather than stable infrastructure software. In

other cases, the respondents identified the availability of the source code as “nice to

have” but said that it had little utility for them. And in a few cases, respondents

worried that the ability to modify source code could ruin configuration control efforts,

increasing future support costs and overall system risks.

• A key action frame of the Open Source movement—that the F/OSS process leads to

more reliable software, faster development time, and better support via the online

community—was clearly not consistent with the perceptions of users. While there

were a range of views, most respondents felt that Linux was somewhat less reliable

than proprietary Unix operating systems, while more reliable but harder to use than

Windows. And while the support of the F/OSS community was often praised, few

 - 23 -

users were willing to forego the security of a formal support contract from a reputable

IT company.

• One point of agreement between the movements and our respondents was the value

placed on having more control over one’s destiny and not being at the mercy of

proprietary software vendors. Open software is perceived as increasing user choice

and control, which have both ideological value to the movements and pragmatic value

to users.

• The most important benefit of open software to users is the one that the movements

both try to downplay, i.e., low cost. While Stallman commands us to think “free

speech, not free beer,” and the Open Source advocates emphasize quality rather than

cost, it is clear that organizational users are thinking about cost more than anything

else when considering F/OSS. Some users even saw the utopian F/OSS development

process mainly as way of getting volunteers to develop software at a low cost: as one

stated, “we want to be free riders.” Others most valued that Linux offered them a way

to run a Unix quality operating system on cheap Intel hardware. This may not be

surprising, given that IT organizations operate under tight budgets in the post dot.com

era, but it presents a dilemma for the movements: Will top programmers be willing to

volunteer their time if their efforts are being touted as mainly a way for user

organizations to save money on software?

• Finally, we found that most IT managers were agnostic about open versus closed

source software, with no one calling for their organizations to refuse to deal with

vendors who refuse to reveal their source code (as both Free and Open Source

rhetoric advocates). We did find a few F/OSS movement members operating within

the user organizations, and in several cases they appeared to be acting as change

agents promoting adoption. Their advocacy was constrained by the goals of the

organization, so they tended to argue for F/OSS on utilitarian grounds. As such, they

might be seen as ideologically impure by the Free Software movement, but in their

own way were actually carrying out the objective of the Open Source movement to

promote open software for pragmatic rather than ideological reasons.

The lack of support for ideological motivations serves as a reminder that the picture compiled

of a computerization movement will depend on when and where it’s compiled. As noted by

 - 24 -

Rogers (1962), the earliest individuals to adopt an innovation are more knowledgeable,

information-seeking and risk-taking than the subsequent early and late majorities of the

population. So with any innovation adoption, the earliest adopters are atypical of the eventual

mass market — they adopt (or join a movement) based on an idea rather than a fully-formed

realization of success.

The earliest case studies, advocacy reports and academic research on F/OSS adoption (e.g.,

those with data from 1999 or earlier) necessarily focused on the earliest adopters, in this case

primarily programmers/hackers and users who have bought into the movement’s ideology.

Meanwhile, reflects our later sample focused on mainstream U.S. organizational users:7 not

surprisingly, our Linux and Apache adopters were less interested in movement rhetorics,

consistent with “early majority” adopters that Rogers (1962) terms “deliberate” and Moore

(1991) refers to as “pragmatists”. Future research on user attitudes towards CMs could contrast

the attitudes of such an early majority to earlier and later populations.

6. References

Baldwin, Carliss Y., and Kim B. Clark. 2000. Design Rules. Cambridge, MA: MIT Press.

Baldwin, Carliss Y., and Kim B. Clark. 2003. The architecture of cooperation: how code

architecture mitigates free riding in the open source development model ,” Harvard Business

School - MIT Sloan Free/Open Source Software Conference: New Models of Software

Development, Cambridge, MA., June, URL:

http://opensource.mit.edu/papers/baldwinclark.pdf

Benbasat, Izak, David K. Goldstein and Melissa Mead. 1987. The case research strategy in

studies of information systems. MIS Quarterly 11(3): 369-386.
DiBona, Chris, Sam Ockman and Mark Stone, eds. 1999. Open Sources: Voices from the Open

Source Revolution, Sebastopol, Calif.: O’Reilly.

Dubé, Line and Guy Paré. 2003. Rigor in information systems positivist case research: current

practices, trends, and recommendations. MIS Quarterly 27(4): 597-635.

Ekbia, Hamid R., and Les Gasser. 2007. Chapter 16. Discourses of Reliability in the Free/Open

Source Software Movement. This volume.

7 Conversely, one expert attributed the sudden German interest in F/OSS by national and local governments to

the presence of the Green Party as part of the respective governing coalitions (interview, June 11, 2003).

http://opensource.mit.edu/papers/baldwinclark.pdf

 - 25 -

Eisenhardt, Kathleen M. 1989. Building theories from case study research. Academy of

Management Review 14(4): 532-550.

Elliott, Margaret S. and Kenneth Kraemer. 2007. Computerization movements and the diffusion

of technological innovations. This volume.

Elliott, Margaret S. and Walt Scacchi. forthcoming. Mobilization of software developers: the free

software movement. Information, Technology and People.

Franke, Nikolaus and Eric von Hippel. 2003. Satisfying heterogeneous user needs via innovation

toolkits. Research Policy, 32 (7), 1199-1215.

Free Software Foundation. 2005. The free software definition. URL.

http://www.gnu.org/philosophy/free-sw.html Accessed May 26, 2006.

Gabel, H. Landis. 1987. Open standards in computers: the case of X/OPEN. In Product

Standardization and Competitive Strategy. Edited by H. Landis Gabel. Amsterdam: North-

Holland.

Garud, Raghu and Arun Kumaraswamy. 1993. Changing competitive dynamics in network

industries: An exploration of Sun Microsystems’ open systems strategy. Strategic

Management Journal. 14(5): 351-369.

Glaser, Barney G., and Anselm Strauss. 1967. The Discovery of Grounded Theory: Strategies of

Qualitative Research. London: Wiedenfeld and Nicholson.

Grindley, Peter. 1995. Open Computer Systems: A Standards Revolution. In Standards Strategy

and Policy: Cases and Stories. Edited by Peter Grindley,156-194. Oxford: Oxford University

Press.

Iacono, Suzi, and Rob Kling. 2001. Computerization Movements: the rise of the Internet and

distant forms of work, in Information Technology and Organizational Transformation:

History, Rhetoric and Practice. Edited by J.A. Yates and J.V. Maanen Sage Publications.

Isaak, Jim. 2006. The role of individuals and social capital in POSIX standardization.

International Journal of IT Standards & Standardization Research 4(1): 1-23.

KernelTrap.org. 2002. Linux: open source ideology. URL: http://kerneltrap.org/node/159, last

accessed Feb. 25, 2005.

Kling, Rob, and Suzi Iacono.1988. The mobilization of support for computerization: the role of

computerization movements. Social Problems. 35(3): 226-242.

http://www.gnu.org/philosophy/free-sw.html
http://kerneltrap.org/node/159

 - 26 -

Kogut, Bruce, and A Metiu. 2001. Open source software development and distributed

innovation. Oxford Review of Economic Policy. 17(2): 248-264.

Lakhani, Karim R., and Eric von Hippel. 2003. How open source software works: ‘free’ user-to-

user assistance. Research Policy 32(6): 923-943.

Lerner, Josh, and Jean Tirole. 2002. Some simple economics of open source. Journal of

Industrial Economics. 52(2): 197-234.

Markus, M. Lynne, Brook Manville, and Carole E. Agres. 2000. What makes a virtual

organization work? Sloan Management Review 42(1): 13-26.

McKusick, Marshall Kirk. 1999. Twenty years of Berkeley Unix. In Open Sources: Voices from

the Open Source Revolution. Edited by Chris DiBona, Sam Ockman and Mark Stone.

Sebastopol, CA: O’Reilly, 31-46

Moody, Glyn. 2001. Rebel Code: Inside Linux and the Open Source Revolution, Cambridge,

MA: Perseus.

Moore, J.T.S. 2002. Revolution OS. movie.

Morin, Richard.1995. BSD-based OS releases, part II. UNIX Review. 13(4).

Open Source Initiative. Frequently asked questions. URL:

http://www.opensource.org/advocacy/faq.php Accessed Feb. 25, 2005.

Open Source Initiative. The open source fefinition. Version 1.9, 2002 URL:

http://www.opensource.org/docs/definition.php Accessed Feb. 25, 2005.

Raymond, Eric S. 2001. The Cathedral and the Bazaar: Musings on Linux and Open Source by

an Accidental Revolutionary, Sebastopol, CA: O’Reilly.

Raymond, Eric S. 1997. The Cathedral and the Bazaar. URL:

http://hackvan.com/pub/stig/articles/cathedral-paper/cathedral.txt, Accessed Feb. 25, 2005.

Raymond, Eric S. 1998. Goodbye, “free software”; hello, “open source”. URL:

http://www.catb.org/~esr/open-source.html Accessed May 26, 2006.

Raymond, Eric S. 1999. The revenge of the hackers. In Open Sources: Voices from the Open

Source Revolution. Edited by Chris DiBona, Sam Ockman and Mark Stone, Sebastopol, CA:

O’Reilly, 207-219.

Rogers, Everett M. 1962. Diffusion of innovations, New York: Free Press.

Rosen, Lawrence. 2004. Open Source Licensing: Software Freedom and Intellectual Property

Law, Upper Saddle River, NJ: Prentice Hall PTR.

http://www.opensource.org/advocacy/faq.php
http://www.opensource.org/docs/definition.php
http://hackvan.com/pub/stig/articles/cathedral-paper/cathedral.txt
http://www.catb.org/~esr/open-source.html

 - 27 -

Salus, Peter H. 1994. A quarter century of UNIX. Reading, MA: Addison-Wesley.

Scacchi, Walt. 2007. Patterns of segmentation and intersection in worlds of open source

software. This volume.

Shankland, Stephen. 2003. IDC: servers to make mild recovery. CNET News.com, May 23

URL: http://news.com.com/2100-1010_3-1009814.html

Stallman, Richard M. 2002. Free Software, Free Society: Selected Essays of Richard M.

Stallman, GNU Press.

Stallman, Richard, 1999. The GNU operating system and the free software movement. In Open

Sources: Voices from the Open Source Revolution. Edited by Chris DiBona, Sam Ockman

and Mark Stone, Sebastopol, CA: O’Reilly, 53-70.

Swanson, E. Burton. 1994. Information systems innovation among organizations. Management

Science, 40(9): 1069-1092.

West, Joel. 2003. How open is open enough? melding proprietary and open source platform

strategies. Research Policy. 32 (7): 1259-1285.

West, Joel. 2005. Understanding open source licensing: three how-to guides. IEEE Software 22

(4): 114-116.

West, Joel, and Jason Dedrick. 2001. Proprietary vs. open standards in the network era: an

examination of the Linux phenomenon. Proceedings of the 34th Annual Hawai‘i

International Conference on System Sciences, Maui, HI.

West, Joel, and Scott Gallagher. 2006. Patterns of Open Innovation in Open Source Software. In

Open Innovation: Researching a New Paradigm. Edited by Henry Chesbrough, Wim

Vanhaverbeke and Joel West. Oxford: Oxford University Press, 82-106.

West, Joel, and Siobhán O’Mahony. 2005. Contrasting community building in sponsored and

community founded open source projects. Proceedings of the 38th Annual Hawai‘i

International Conference on System Sciences, Waikoloa, HI. URL:

http://opensource.mit.edu/papers/westomahony.pdf

http://news.com.com/2100-1010_3-1009814.html
http://opensource.mit.edu/papers/westomahony.pdf

 - 28 -

7. Tables and Figures

Movement Unix Free Software Open Source
Starting date 1969 1984 1998
Submovement BSD Open

Systems

Leaders Academic
programmer
s

IT vendors,
users

Programmers Programmers, IT
vendors

Leadership
orientation

Technical
excellence

Business
adoption

Technical
excellence

Business adoption

Philosophical
Goals

Academic
research

Vendor
independen
ce

Software freedom Pragmatic success

Licenses* MIT (1985)
BSD (1989)

proprietary GPL (1989)
LGPL (1991)

MPL (1998)
CPL (2001)

Key
technologies

V7 (1979)
BSD (1977)
X11 (1987)
Motif (1990)
4.4BSD-Lite (1994)

GNU Emacs (1984)
gcc (1987)
Gnome (1997)

Apache (1995)
MySQL (1995)

Key Institutions IEEE POSIX (1984)
X/Open (1984)
Open Software Foundation

(1988)
Unix International (1988)
Open Group (1996)

Free Software
Foundation
(1985)

Software Freedom
Law Center
(2005)

Open Source
Initiative (1998)

Apache Software
Foundation
(1999)

Open Source
Development
Labs (2000)

Sponsors ATT, DARPA, DEC, IBM,
Sun

n/a IBM, HP, Intel

Spokesmen Bill Joy Richard Stallman
Eben Moglen

Linus Torvalds
Eric Raymond

* Licenses conforming to the Open Source Definition and approved by the Open Source Initiative

Table 15.1: Contrasting the Open Software movements

 - 29 -

Free Software Foundation Open Source Initiative
Four Freedoms Open Source Definition
0. The freedom to run the program, for any

purpose.

1. The freedom to study how the program
works, and adapt it to your needs. Access
to the source code is a precondition for this.

2. The freedom to redistribute copies so you
can help your neighbor.

3. The freedom to improve the program, and
release your improvements to the public, so
that the whole community benefits. Access
to the source code is a precondition for this.

1. Free Redistribution [without restriction or
royalty]

2. Source Code [must be included]
3. Derived Works [must be allowed and

distributable]
4. Integrity of The Author's Source Code

[may be protected]
5. No Discrimination Against Persons or

Groups
6. No Discrimination Against Fields of

Endeavor
7. Distribution of License

8. License Must Not Be Specific to a Product
[so technology can be used in other
products]

9. License Must Not Restrict Other Software
[allowing mixing with proprietary
software]

10. License Must Be Technology-Neutral
Source: Free Software Foundation (2005), Open Source Initiative (2002)

Table 15.2: Basic principles of the free and open source software movements

 - 30 -

Name

Business

Org. (unit)
Size†

Primary
Platform

Linux Adoption

Inform
ants

Beach Co. Rec. equipment 80 Windows Website only 1
Bio Branch Pharmaceuticals 560 (150) Linux Predominant 1
Biotech Pharmaceuticals 1,000 Unix Internet and database

applications
2

Dataco Online data retrieval 2,700 (1,500) Linux Phasing out Unix 1
E-store E-commerce 7,500 Unix Shifting from Unix to

Linux
1

FastFood Restaurant chain 200,000 Mixed None 1
FinCo Financial services 130,000 Mixed Partial adoption 1
NatLab Government research

lab
(8,000) Unix Phasing out Unix 2

ISP Internet service
provider

11 Linux Since founding 1

NewMedia Content provider 35 Unix Partial transition 2
NorthU Public university

professional school
114,000 (325) Mixed Replacing Unix with

Linux, while keeping
Windows

3

Semico Semiconductor
design

2,500 Mixed Limited; evaluating
further use

2

SouthU Public university
professional school

114,000 (300) Windows Abandoned previous
limited use

2

Travel Service Travel-related
reservations

6,000 Mainframe Partial adoption 1

Total: 14 companies, 21 informants
† Size of parent organization (unit) in number of employees

Table 15.3: Characteristics of sample firms

 Free software
movement

Open source
movement

Organizational
adopters

Primary Goal “Software
freedom”

Widespread
adoption

Economic utility

Access to source code Fundamental Fundamental Valued by some,
used selectively

Better quality software and support Not
emphasized

Primary benefit
of open vs.

closed source

Mixed views on
quality, want a

support contract
Control and choice Key goal Key goal Important to

many
Cheap software “Think free

speech, not free
beer”

Not emphasized Key benefit,
universally

valued
Perceptions of the movement True believers,

purists
Pragmatic
evangelists

Agnostic

Table 15.4: Perceptions of movements versus users

